12 United States Patent

Arroyo et al.

US011086860B2

US 11,086,860 B2
Aug. 10, 2021

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

(%)

(21)

(22)

(65)

(63)

(60)

(1)
(52)

(58)

PREDEFINED SEMANTIC QUERIES

Applicant: Capricorn Holdings Pte. Ltd.,
Singapore (SG)

Sinuhé Arroyo, Madrid (ES); Carlos
Ruiz Moreno, Madrid (ES)

Inventors:

CAPRICORN HOLDINGS PTE,
LTD, Singapore (SG)

Assignee:

Subject to any disclaimer, the term of this

patent 1s extended or adjusted under 35
U.S.C. 134(b) by 190 days.

Notice:

Appl. No.: 16/353,368

Filed: Mar. 14, 2019

Prior Publication Data

US 2019/0213185 Al Jul. 11, 2019

Related U.S. Application Data

Continuation-in-part of application No. 15/698,097,
filed on Sep. 7, 2017, now Pat. No. 10,599,643, which
1s a continuation of application No. 14/284,320, filed
on May 21, 2014, now Pat. No. 9,785,671.

Provisional application No. 61/846,547, filed on Jul.
15, 2013.

Int. CI.

GOol 167245 (2019.01)

U.S. CL

CPC e, Gool’ 16/245 (2019.01)
Field of Classification Search

CPC .., GO6F 16/245; GO6F 16/2448; GO6F

16/2452; GO6F 16/254; GO6F 16/332;

GO6F 16/3322; GO6F 16/3335; GO6F

16/38; GO6F 16/9535; GO6F 16/972;

GO6F 17/30424; Y10S 707/99934; Y10S

707/99935; Y10S 7077/99943; Y10S

7007/99944

USPC e 707779
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2009/0216730 Al* 8/2009 Sastry GOO6F 16/2428
2015/0339577 Al* 11/2015 Waltinger GO6N 20/00
706/12

* cited by examiner

Primary Examiner — Evan Aspinwall
(74) Attorney, Agent, or Firm — Quarles & Brady LLP

(57) ABSTRACT

An 1nformation retrieval system and method are presented.
A template 1s retrieved from a template repository. The
template repository stores a plurality of templates. Each of
the plurality of templates includes a concept and a relation-
ship from a knowledge model. The knowledge model
defines a plurality of entities and mterrelationships between
one or more of the plurality of entities. The plurality of
entities include concepts and instances. The template 1s
transmitted to a client computer, and a statement 1s recerved
from the client computer. The statement includes an 1nstan-
tiation of the template. A knowledge base 1s queried using
the statement to generate a result listing 1dentilying an 1tem
in the knowledge base. The knowledge base identifies a
plurality of items. Each of the plurality of 1items 1s associated
with at least one annotation 1dentifying at one of the entities
in the knowledge model.

20 Claims, 21 Drawing Sheets

File Edit Tools

/=

Advanced Search

Search Options | Triple

Step 1

select a tempiate | ..

Of ¢reate a new one 804

_ist of triples previously selected

The gark knight rises -> actors -> persona

L e e syl

| Search l

20 Remove

T

U.S. Patent Aug. 10, 2021 Sheet 1 of 21 US 11,086,860 B2

100

Search Client 102 /

Query Generation and Network/
Processing Server 104 Internet 106

Template
¢ » Repository 112

Knowledge
Model 108

Knowledge
Base 110

FIG. 1

Query Generation and Processing Server 104

Template Choice Query Generation 204
Selection 202

Knowledge Base Results Output 208
Search 206

FIG. 2

U.S. Patent Aug. 10, 2021 Sheet 2 of 21 US 11,086,860 B2

Knowledge
Model 108

Query Generation 302

Template
Repository 112

Statement-Based Query 304

Knowledge Base Search 306 Knowledge
Base 110
Results 308

FIG. 3
Knowledge
Model 108
Add Statement to Query 402
| Template
Repository 112
Add More
Finish

Statement-Based Query 406

FIG. 4

U.S. Patent Aug. 10, 2021 Sheet 3 of 21 US 11,086,860 B2

Template
Repository 112

Choose Template 502

Instantiate Template 504
Statement 506

FIG. 5

DD}
®_.
(D} =
o

Knowledge
Model 108

FIG. 6

U.S. Patent

Aug. 10, 2021

702

Basketball

Sheet 4 of 21

/—/%

|

|

Memphis
Grizzlies

|

|

/—%

a) Player ——» plays for
Paul Gasol
D) plays for
Basketball
C) Player — plays for
Kobe
d) Bryant plays for
Q4
a) ———p beats
Boston
b) Celtics beats
C) -—b beats
Dallas
a) Mavericks beats
a) Ba|:?|I;§Lbrall —p performs
Kobe
D) Bryant performs
C) Bali?llgtebra” —— performs
Paul Gasol
d) performs

FIG. 7

|

tele

Memphis
Grizzlies

|

|

060/ G

|

US 11,086,860 B2

U.S. Patent Aug. 10, 2021 Sheet 5 of 21 US 11,086,860 B2

File Edit Tools e e

Advanced Search

Search Options | Triple

Select a template ... \V4 802

Or creaie a new one 04

Step 1

List of triples previously selected

The dark knight rises -> actors -> persona 806

FIG. 8A

U.S. Patent Aug. 10, 2021 Sheet 6 of 21

File Edit Tools &

Advanced Search

Search Options | Triple
Step 1

Select a template ... a

Assets with movie that belongs genre
Assets including movie with actor

Assels with movie directed by director
Assels where person appears in movie
Assets with TV Show belongs to genre
Assets where person produces movie
Assets with TV show created by person
Assets with movie that belongs o saga
Assels with character played by actor
Assets including movie with ongin county

No Template Selected

FIG. 8B

Q0
e
-

0
e
-

0
ke
-

US 11,086,860 B2

U.S. Patent Aug. 10, 2021 Sheet 7 of 21 US 11,086,860 B2

File Edit Tools &

Advanced Search

Search Options | Triple

Step 2: Edit the concepts

Assets Including with | actor ! Add
832 826

824

No Template Selected

FIG. 8C

U.S. Patent Aug. 10, 2021 Sheet 8 of 21 US 11,086,860 B2

File Edit Tools &

Advanced Search

Search Options | Triple

Step 2: Edit the concepts

Assets Including

wWith christian bale ! Add
832 826

824

No Template Selected

FIG. 8D

U.S. Patent Aug. 10, 2021 Sheet 9 of 21 US 11,086,860 B2

File Edit Tools &

Predefined Semantic Query Search

PredefinedQuery containsConcept Input or select a [concept] TAND]
PredefinedQuery containsRelationship | Input or select a [relationship]

I Search l
Fredefined Queries Found: a Select l

FIG. 9

U.S. Patent Aug. 10, 2021 Sheet 10 of 21 US 11,086,860 B2

File Edit Tools &

Predefined Semantic Query Search

!
B
<

PredefinedQuery containsConcept Input or select a fconcept]

PredefinedQuery containsConcept Input or select a f[concept]

<
i
prd L
O
<

PredefinedQuery containsRelationship | Input or select a [relationship]| V

PredefinedQuery containsRelationship | |nput or select a [relationship

I Predefined Queries Found: l: l Select l

!
2

FIG. 10

U.S. Patent Aug. 10, 2021 Sheet 11 of 21 US 11,086,860 B2

File Edit Tools &

Predefined Semantic Query Search

PredefinedQuery containsRelationship | Input or select a [relationship]| V D

__Mb v

HL
s

PredefinedQuery containsConcept Input or select a fconcept]

PredefinedQuery containsRelationship | Input or select a [concept]

'
Z

PredefinedQuery containsRelationship | |nput or select a [relationship

I Predefined Queries Found: I: l Select l

I

FIG. 11

U.S. Patent Aug. 10, 2021 Sheet 12 of 21 US 11,086,860 B2

File Edit Tools &

Predefined Semantic Query Search

PredefinedQuery containsConcept FlyingCar
PredefinedQuery containsRelationship

I Search l

Fredefined Queries Found: a Select I

<movie> contains FlyingCar

<document> contains FlyingCar
FlyingCar contains <person>

FIG. 12

U.S. Patent Aug. 10, 2021 Sheet 13 of 21 US 11,086,860 B2

File Edit Tools &

Semantic Query Search

Concept/instance: Relationship: Concept/Instance
Focar [

Search

Results Found: a welect I

| !

FIG. 13

U.S. Patent Aug. 10, 2021 Sheet 14 of 21 US 11,086,860 B2

File Edit Tools

Semantic Query Search

Concept/instance: Relationship: Concept/instance

ShortMovie N w FlysngCar

Results Found: a

Car: the Movie about Futuristic Cars

Flying Cars: The Future of Individual Transportation
FAA: the Airspace Management Challenge

FIG. 14

U.S. Patent Aug. 10, 2021 Sheet 15 of 21 US 11,086,860 B2

File Edit Tools &

Semantic Query Search

Concept/instance: Relationship: Concept/instance:

[inoier][] [somwe [v] [ooamensn [v] [[¥
Add semantic query from redeﬁned sémantic uery search user interface

Results Found: a Select l

.'
KK

FIG. 15

U.S. Patent Aug. 10, 2021 Sheet 16 of 21 US 11,086,860 B2

File Edit Tools &

Semantic Query Search

Concept/instance: Relationship: Concept/instance:

ShortMovie \V4 FlyingCar \V4
mowr_[v] [somwe [v

Add semantic query from predefined semantic query searc

-

user interface

Search

Results Found: a Select

Flying Cars: The Future of Individual Transportation
FAA: the Airspace Management Challenge

FIG. 16

U.S. Patent Aug. 10, 2021 Sheet 17 of 21 US 11,086,860 B2

File Edit Tools &

Semantic Query Search

Concept/instance: Relationship: Concept/instance

(Movie shorterEqualThan 30Minutes) |7 | | contains - FlyingCar ﬂ

- Add semantic aquery from predefined semantic guery search user interface

Results Found: a Select l

FIG. 17

U.S. Patent Aug. 10, 2021 Sheet 18 of 21 US 11,086,860 B2

File Edit Tools

Semantic Query Search

Concept/instance: Relationship: Concept/instance

Parameter Constramts:

owemniion [P [] [

! Rresults Found: I:: l oelect l

FIG. 18

U.S. Patent Aug. 10, 2021 Sheet 19 of 21 US 11,086,860 B2

File Edit Tools

Semantic Query Search

Concept/instance: Relationship: Concept/instance

Parameter Constramts:

omemmiion [P [] [%

Add to Catalog
! Results Found; I:: l oelect l

FIG. 19

U.S. Patent Aug. 10, 2021 Sheet 20 of 21 US 11,086,860 B2

File Edit Tools &

Semantic Query Search

Concept/instance: Relationship: Concept/Instance

e [

Unique ldentifier:

‘FlyingCarMovies: E

l Results Found: IVI

FIG. 20

U.S. Patent Aug. 10, 2021 Sheet 21 of 21 US 11,086,860 B2

File Edit Tools &

Semantic Query Search

Unique ldentifier:

:FlyingCarMovies: a I:E

Concept/instance: Relationship: Concept/instance

e 7] [oww [v

Add semantic auery from predefined semantic query search user interface

Add o Catalog
Results Found: select I

FIG. 21

US 11,086,360 B2

1
PREDEFINED SEMANTIC QUERIES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application 1s a continuation-in-part of U.S. patent
application Ser. No. 15/698,097, filed Sep. 7, 2017 and
entitled “TEMPLATE-DRIVEN STRUCTURED QUERY
GENERATION,” which 1s a continuation of U.S. patent
application Ser. No. 14/284,320, filed May 21, 2014 and
entitled “TEMPLATE-DRIVEN STRUCTUR. JD QUERY
GENERATION,” which, 1n turn, claims priority to U.S.
Provisional Patent Application No. 61/846,547 filed Jul. 15,
2013 and entitled “TEMPLATE-DRIVEN STRUCTURED
QUERY GENERATION.”

FIELD OF THE INVENTION

The disclosure relates 1n general to an electronic system
for querying a database and, more particularly, to a method
and apparatus for enabling a user to generate a query using
a template.

BACKGROUND

Different approaches have been taken with respect to

information retrieval and search techmiques within large
database repositories. Typically, the process of information
retrieval 1s triggered by a query entered by a user. Queries,
in this context, formally capture the user’s information
needs, and are aimed at retrieving a set of results that match
the query, ordered by relevancy. In most cases, the user input
1s a string of natural language text, enabling the execution of
keyword queries of a database to retrieve a listing of 1tems
from the database that are indexed with the same keywords
in the repository.

Two important information retrieval systems performance
measures are “precision” and “recall”. Given a particular
query, a set of items i1n the repository, and an a priori
knowledge of document relevancy so that each item 1s
known to be either relevant or non-relevant for a given
query, “precision”’ measures the ratio between the number of
relevant 1items 1ncluded in the set of query results and the
total number of the set of results, while “recall” measures the
ratio between the number of relevant items in the set of
results and the total number of relevant items in the reposi-
tory.

Generally, there 1s a trade-ofl between recall and preci-
s10m, so that if precision 1s increased, recall will be poor, and
in turn, if recall 1s increased, precision will be poor. For
keyword-based systems, many systems do not reach 40% for
both measures, given that ambiguous words 1n the query of
a queried database might produce erroneous results and that
different ways of referring to the items in the database might
cause relevant documents not to appear 1n the results.

BRIEF SUMMARY

The disclosure relates 1n general to an electronic system
for querying a database and, more particularly, to a method
and apparatus for enabling a user to generate a query using
a template or a template catalog.

In one implementation, the present invention 1s an infor-
mation retrieval system, comprising a knowledge model
database configured to store a knowledge model for a
knowledge domain. The knowledge model defines a plural-
ity of enftities and interrelationships between one or more of

10

15

20

25

30

35

40

45

50

55

60

65

2

the plurality of entities. The plurality of entities include
concepts and instances. The information retrieval system

includes a knowledge base, also referred to as a knowledge
store herein, 1dentifying a plurality of items. Each of the
plurality of items 1s associated with at least one annotation
identifying at least one of the entities 1n the knowledge
model. The information retrieval system includes a template
repository storing a plurality of templates. Each of the
plurality of templates includes a concept and a relationship
from the knowledge model. The immformation retrieval sys-
tem 1ncludes a query processing server configured to retrieve
one of the templates from the template repository, transmit
the template to a client computer, receive, from the client
computer, a statement, the statement including an instantia-
tion of the template, and query the knowledge base using the
statement to generate a result listing 1dentifying an item 1n
the knowledge base.

In another implementation, the present invention includes
a method, comprising retrieving a template from a template
repository. The template repository stores a plurality of
templates. Fach of the plurality of templates includes a
concept and a relationship from a knowledge model. The
knowledge model defines a plurality of entities and interre-
lationships between one or more of the plurality of entities.
The plurality of entities include concepts and instances. The
method includes transmitting the template to a client com-
puter, and receiving, from the client computer, a statement.
The statement 1includes an 1nstantiation of the template. The
method includes querying a knowledge base using the
statement to generate a result listing 1dentifying an item 1n
the knowledge base. The knowledge base identifies a plu-
rality of items. Each of the plurality of items 1s associated
with at least one annotation identifying at least one of the
entities in the knowledge model.

In another implementation, the present invention includes
a non-transitory computer-readable medium containing
instructions that, when executed by a processor, cause the
processor to pertorm the steps of retrieving a template from
a template repository. The template repository stores a
plurality of templates. Each of the plurality of templates
includes a concept and a relationship from a knowledge
model. The knowledge model defines a plurality of entities
and interrelationships between one or more of the plurality
of entities. The plurality of entities include concepts and
instances. The instructions are configured to cause the
processor to perform transmitting the template to a client
computer, recerving, from the client computer, a statement,
the statement including an instantiation of the template, and
querying a knowledge base using the statement to generate
a result listing 1dentifying an item in the knowledge base.
The knowledge base 1dentifies a plurality of items. Each of
the plurality of items 1s associated with at least one anno-
tation 1dentifying at least one of the entities 1n the knowledge
model.

BRIEF DESCRIPTION OF THE

DRAWINGS

FIG. 1 1s a block diagram 1llustrating one example con-
figuration of the functional components of the present infor-
mation retrieval system.

FIG. 2 1s a block diagram showing functional components
ol a query generation and processing system.

FIG. 3 15 a flowchart illustrating an exemplary method for
performing a query in accordance with the present disclo-

sure.
FIG. 4 1s a flowchart illustrating details of the method
illustrated 1n FIG. 3.

US 11,086,360 B2

3

FIG. 5 1s a flowchart for a method for a user to select and
instantiate a template.

FIG. 6 15 an illustration depicting the four possible query
statement combinations.

FIG. 7 1s an 1llustration depicting example templates and
potential mstantiation for each of the example templates.

FIGS. 8A-8D are screenshots illustrating example user
interfaces depicted by the present system

FIGS. 9-21 are screenshots illustrating example user
interfaces depicted by the present system

DETAILED DESCRIPTION OF THE DRAWINGS

The disclosure relates 1n general to an electronic system
for querying a database and, more particularly, to a method
and apparatus for enabling a user to generate a query using
a template, and/or to store, retrieve and display the generated
query, or any other predefined semantic query, to a user,
thereby allowing the user to select or modily any of the
search parameters within the predefined semantic query.

This invention 1s described in embodiments in the fol-
lowing description with reference to the Figures, in which
like numbers represent the same or similar elements. Ret-
erence throughout this specification to “one embodiment,”
“an embodiment,” “one 1mplementation,” “an 1implementa-
tion,” or similar language means that a particular feature,
structure, or characteristic described 1n connection with the
embodiment 1s included 1n at least one embodiment of the
present invention. Thus, appearances of the phrases “in one
implementation,” “in an implementation,” and similar lan-
guage throughout this specification may, but do not neces-
sarily, all refer to the same embodiment.

The described features, structures, or characteristics of the
invention may be combined 1n any suitable manner 1n one or
more implementations. In the following description, numer-
ous specific details are recited to provide a thorough under-
standing of implementations of the invention. One skilled 1n
the relevant art will recognize, however, that the invention
may be practiced without one or more of the specific details,
or with other methods, components, materials, and so forth.
In other instances, well-known structures, materials, or
operations are not shown or described in detail to avoid
obscuring aspects of the invention.

Any schematic tlow chart diagrams included are generally
set forth as logical flow-chart diagrams. As such, the
depicted order and labeled steps are indicative of one
embodiment of the presented method. Other steps and
methods may be concerved that are equivalent 1n function,
logic, or eflect to one or more steps, or portions thereof, of
the 1llustrated method. Additionally, the format and symbols
employed are provided to explain the logical steps of the
method and are understood not to limit the scope of the
method. Although various arrow types and line types may be
employed 1n the flow-chart diagrams, they are understood
not to limit the scope of the corresponding method. Indeed,
some arrows or other connectors may be used to indicate
only the logical tlow of the method. For instance, an arrow
may indicate a waiting or monitoring period of unspecified
duration between enumerated steps of the depicted method.
Additionally, the order in which a particular method occurs
may or may not strictly adhere to the order of the corre-
sponding steps shown.

Executing an accurate search for a specific electronic file
or document within a collection of files or documents
continues to become increasingly complex. As the volume
of available electronic files and documents increases, it
becomes more and more difficult to precisely 1dentity and

- A 1

10

15

20

25

30

35

40

45

50

55

60

65

4

access the data most relevant to a user’s search. One solution
to this problem 1s referred to in this disclosure as semantic
queries. These semantic queries allow users to formulate and
to execute queries to search and access data items, such as
clectronic data, files or documents, based on knowledge of
a formalized domain relating to a specific subject.

In this disclosure, assets may refer to any data, file, such
as documents, videos, emails, calendar items, music, etc.,
which may be annotated semantically (e.g., associated with
metadata within a database) using elements within ontolo-
gies (e.g., concepts, instances of these concepts, and/or
relationships between them), which encode domain knowl-
edge. This domain knowledge may be referred to herein as
a knowledge model. The assets semantically annotated
according to this knowledge model may form, and be
referred to herein as, a semantic knowledge store or knowl-
cedge base. Assets mm a knowledge store are specifically
searchable according to semantic queries including the con-
cepts, mstances, and/or relationships within the knowledge
model that match semantic annotations associated with the
assets 1 the knowledge base. Searching according to this
model 1s referred to herein as a semantic search.

In order to generate a correct semantic query and eflec-

tively execute such a semantic search, a user must know and
understand not only the query language, but also the knowl-
edge model. However, this disclosure details an alternative
method of executing a semantic query search using pre-
defined queries and templates, allowing a user to correctly
and consistently generate and execute semantic queries
without an understanding of the underlying knowledge
model. The user may modity the parameters of these seman-
tic queries, execute them, and save them as predefined
semantic queries and/or templates. These predefined seman-
tic queries and/or templates may be stored within a semantic
query/template catalog for later modification and/or reuse,
and may be searched according to the concept, instance,
and/or relationship parameters used.
Thus, this disclosure outlines systems and methods allow-
ing a user to execute such semantic queries of files within the
knowledge store database, by mputting, selecting or other-
wise defining search parameters used to match the concepts,
instances, and/or relationships associated with the files 1n the
knowledge store database with the concepts, instances and/
or relationships defining the ontologies 1n a knowledge
model database.

The disclosed systems and methods may include one or
more server computers configured to receive mput defiming
one or more ontologies within a knowledge model database.
These ontologies may include combinations of concepts,
specific instances ol the concepts, and/or relationships
between the concepts and/or instances. The data records
within the knowledge model database may further define a
hierarchy of super-groups and sub-groups among and
between the concepts, instances, and/or relationships. The
relationships between the concepts and/or instances, both
within the knowledge model ontologies and the annotations
of files 1n the knowledge store database, may be 1n a form
of <concept/instance> <relationship> <concepts/instance>
(e.g., movie contains flyingCar), referred to heremn as a
triplescore or triple.

The server may query the knowledge model data records
or other data within the knowledge model to identily the
concepts that make up the ontologies of the knowledge
model. The server may further identity specific mstances of
the 1dentified concepts, and any relationships between the
identified concepts and/or instances, and generate a user
interface (Ul) including one or more Ul controls to define a

US 11,086,360 B2

S

triple, or any combination of triples, according to any
combination of concepts, instances, and the relationship(s)
between them, as defined 1n the ontologies of the knowledge
model.

The Ul controls may i1dentify parameters within the
triple(s) that the user may need to replace with a selected
value, either by inputting a character string or by selecting,
a replacement for the parameter from a menu of available
value options generated by the server from the knowledge
model. The mput or selected value may include the highest
concept, mstance, and/or relationship (1.e., super-group) 1n a
hierarchy as defined 1n the knowledge model, thereby
including all sub-groups of the hierarchy in the search, or
allowing the user to replace the parameter with any sub-
group ol concepts or imnstances of the identified super-group.

In embodiments where the user selects the value to
replace the parameter, the server may execute a database
query selecting the relevant concepts, instances, and/or
relationships related to the parameters represented in the
predefined semantic query template, and populate the Ul
controls for the parameters accordingly. Responsive to user
input for one or more of the parameter Ul controls, the query
may be re-run to i1dentify concepts, mstances and/or rela-
tionships within the knowledge model as limited by the
selected parameter, and the server may re-populate the
remaining parameter Ul controls, as limited by the query
results.

The Ul may include additional Ul controls for more
complex queries.

These queries may 1nclude concatenating triples to other
triples (using the Boolean operators and, or, and not),
grouping triples with other, possibly concatenated, triples,
and/or selecting triples as a parameter within other triples.

Once all parameter input from UI controls has been
received from the user operating the client computer, the
parameter mput may be transmitted to the server(s). The
server(s) may analyze the received transmission, and 1if
necessary, 1dentity any missing but required parameter data
and generate a notification requesting the missing parameter
data (possibly re-generating the Ul with previously received
parameter data). In some embodiments, the server(s) may
identily any missing parameters and automatically replace
them with a concept, instance, and/or relationship that either
has the same name as the parameter, or 1s the highest
relevant concept (e.g., super-group) related to the parameter.

The server may then generate a search query using the
triple(s) 1dentified from the received parameters, and
execute 1t as a database query of the knowledge store. The
selected files returned from the data query may include all
files 1n the knowledge store associated with annotations
comprising the identified triples or combinations of triples.
The server(s) may then generate a list of all returned files
from the database knowledge store query result, and trans-
mit the compiled list to the client computer for display and
selection by the user, which may then access the assets
represented within the list.

The Ul may further include Ul controls allowing the user,
or a system administrator, to input a selection to save the
semantic query search as a predefined semantic query. The
option to save the parameters for the semantic search query
may be presented to the user prior or subsequent to the
search. For example, 11 the search 1s successiul, the user may
choose to save the search query parameters as a predefined
semantic query. Similarly, the user may continue to modily
the search query, parameters, saving each modification as a
new predefined semantic search query. Because each search
query may be modified according to its parameters, the Ul

10

15

20

25

30

35

40

45

50

55

60

65

6

may also include Ul controls allowing the user to save each
search query, and 1ts parameters, as a semantic search query
template.

The server(s) may store each predefined semantic search
query and/or semantic search query template as a data record
in data storage. The collection of predefined search queries/
templates may make up a semantic search query catalog,
which may be later selected by the user and/or any other
users to execute and/or modity queries searching the knowl-
edge store.

The author of a predefined semantic search query/tem-
plate may place constraints/restrictions on any of the param-
cters 1n the query/template (e.g., searches for movies limited
to movies produced 1n the U.S.). In this disclosure, authors
may include a system administrator inputting and defining
predefined semantic search queries/templates (possibly by a
specialized administrator Ul), or any end user inputting and
saving a semantic search query as a predefined semantic
search query as disclosed herein. The constraint/restriction
may restrict any ol the parameters that a subsequent user
may enter into the Ul and/or the parameters of the concepts,
instances, and/or relationships searched within the annota-
tions associated with the files 1n the knowledge store.

The server(s) may analyze the search query catalog and
generate and send to the client computer for display, a
specialized Ul for selecting predefined semantic search
queries and/or templates according to one or more concepts,
instances, and/or relationships used as parameters in the
predefined semantic query/template.

The present system and method provides a mechanism 1n
which users can construct a formal query, and/or one or
more predefined semantic queries or templates, composed of
statements that comply with an underlying structured knowl-
edge model. In one implementation, the statements define a
structured relationship between entities that may be associ-
ated with one or more documents 1n a knowledge base
(described below). Such a structured query, including one or
more such statement, 1S able to retrieve a relevant set of
results from a document repository (e.g., a knowledge base)
in which each document has been annotated with the same
kind of statements compliant with a knowledge model
(described below).

For a given subject matter, the present system provides
both a knowledge model and a knowledge base. A knowl-
edge model 1s the formal representation of knowledge of any
combination of domains described within the knowledge
model, including and encoding concepts, specific instances
of those concepts, and/or the relationships between them. As
a non-limiting example, this disclosure uses triples, in the
form of <concept/instance> <relationship> <concept/in-
stance> as a highly expressive ontology representing
domain knowledge within the knowledge model. However,
an ontology 1s not the only formal mechanism to encode
domain knowledge and the scope of this disclosure should
not be limited to ontologies.

The knowledge model includes an ontology that defines
concepts, entities, and interrelationships thereof for a given
subject matter or knowledge domain. The knowledge model,
therefore, normalizes the relevant terminology for a given
subject matter domain. The knowledge model may be imple-
mented 1n a graph structure, in which a set of entities are
related through formal relationships. As will be described
turther below, these formal relationships between entities 1n
the knowledge model are utilized 1n constructing a number
of templates that may be employed by user to facilitate the
search process. In the present disclosure, reference 1s made
to ontologies as a mechanism to describe the relationship

US 11,086,360 B2

7

between a number of entities, however any other equivalent
or similar model with a graph structure may be utilized 1n
place of the ontologies of the present disclosure.

The knowledge model may be composed of different
ontological components that define the knowledge domain.
The components can include concepts, 1nstances, and rela-
tionships. Concepts (Classes), which are abstract objects of
a given domain (in the present disclosure the knowledge
domain of “sports” may be used for a number of non-
limiting examples) such as categories or types; an example
ol a concept would be “basketball player™, “team” or “three-
point field goal”; Instances (Individual objects) are concrete
objects, for example a given player such as “Pau Gasol” or
a team like “Los Angeles Lakers”; Relationships (relations)
how objects (including both concepts and instances) in the
knowledge model relate to other objects, for example the
relationship ¢ plays for” links the concept “basketball player™
with the concept “team”, and also may link the concrete
instance “Pau Gasol” with the instance “Los Angeles Lak-

rs”. In some cases, two terms may be directly connected
through more than one relationship; for example, the con-
cept “basketball player” and the concept “team”™ may also be
related through the “plays against” relationship. The terms
of the knowledge model include concepts, instances and
relationships of a given domain to be used within a specific
application are usually modeled by hand by ontology engi-
neers. Such modeling 1s a process where arbitrary decisions
need to be taken to relate the terms of the knowledge model,
and even though there are standard vocabularies and ontolo-
gies, the same domain may be modeled in different ways 1n
different knowledge models.

Concepts within the knowledge model may include addi-
tional concepts organized 1n any combination of a super-/
sub-concept relationship. These concepts may be organized
within a knowledge model database as data records, and a
data record identifier for the super-concept may be joined to
a data record for a sub-concept, and vice versa. For example,
a data record for the concept “movie” within the knowledge
model database may be joimned with a data record for the
concept “prop,” establishing a prop as a sub-concept of a
movie. The data record for prop may be further joined to the
data records for the concepts chair, table, and couch, estab-
lishing chair, table, and couch as sub-concepts of both prop
and movie, and so on.

The knowledge base (also referred to herein as a knowl-
edge store), 1n contrast, 1s the store of information that the
information retrieval system 1s configured to search. The
knowledge base 1s a database including many items (or
references to many 1tems) where the 1tems can include many
different types of content (e.g., documents, data, multimedia,
and the like) that a user may wish to search. The content of
the knowledge base can be stored 1n any suitable database
configured to store the contents of the items and enable
retrieval of the same.

A user may search for assets within the knowledge base,
These assets may include any electronic file 1items, such as
data, data records, documents, videos, music, podcasts,
pictures, email conversations, tweets, periodicals, etc., in
any format that can be processed (e.g., text in any language),
and/or the content of these electronic assets (e.g., the content
of a web page). The search may occur within any knowledge
store file system container of any scope, such as a file system
or repository, a database, the World Wide Web, a mail
system, a smart phone, etc. using any interface or means of
access.

Some knowledge bases may allow updating assets 1n
place, while others may implement a versioning model in

10

15

20

25

30

35

40

45

50

55

60

65

8

order to keep the update history. Deleting an asset may cause
a real removal, and sometimes deleting an asset 1s a logical
deletion. This disclosure includes any and all interfaces and
behaviors associated with the knowledge store.

To facilitate searching, the items in the knowledge base
can each be associated with different terms (e.g., concepts,
instances, and/or relationships) contained within the knowl-
edge base. This association can be made explicitly (e.g.,
through the use of metadata associated with the content), or
implicitly by the item’s content. With the items 1n the
knowledge base catalogued using information from the
knowledge model, the knowledge model becomes an index
or table of contents by which to navigate the contents of the
knowledge base.

Thus, assets that make up the knowledge base may be
annotated, possibly by attached metadata, or additional data
stored 1n data records associated with the knowledge base,
according to the concepts, mnstances, and/or relationships
defined 1n the ontologies of the knowledge model. Assets
annotated in this way are referred to herein as semantically
annotated assets, and those assets that are not annotated
cannot be searched by the semantic queries described below,
unless a general search of all objects 1n the knowledge base
1s executed. A single asset may have several annotations.
The annotations associated with the assets may also asso-
ciate the assets with one another. For example, an email may
be annotated as a part of an email conversation, or specific
documents may be annotated to identily them as part of a
periodical.

If updating an asset in a knowledge store results 1n
versioning, then the disclosed system may include an anno-
tation strategy to ensure that a new version has the correct
semantic annotations. One possible annotation strategy 1s to
use the same annotations as an immediate preceding version
for a new version of an asset. A change of annotation of the
new version will, however, not be retlected on 1ts preceding
versions.

Any maintenance of ontologies, including changing the
name of a concept, for example, will be retlected 1n the
semantic annotations of all versions. While the semantic
annotations of the existing versions cannot be changed
(except for the last version), ontology changes due to
maintenance will be reflected.

If deleting an asset 1s a logical delete, the semantic
annotations of that asset will be part of that deletion and
semantic annotations cannot be changed. Ontology mainte-
nance, however, will be reflected as the knowledge store
might offer an ‘undelete’ operation and after imnvoking this
operation the asset 1s available again for semantic search.
Consequently the semantic annotations must be correct.

FIG. 1 1s a block diagram 1llustrating one example con-
figuration of the functional components of the present infor-
mation retrieval system 100. System 100 includes search
client 102. Client 102 includes a computer executing sofit-
ware configured to interact with query generation and pro-
cessing server 104 via communications network 106. Client
102 can include a conventional desktop computer or por-
table devices, such as laptops computers, smart phones,
tablets, and the like. A user uses client 102 to submit a query
and then view the results of that query after execution of the
query against a particular knowledge base.

Query generation and processing server 104 1s configured
to interact with client 102 to perform a query. Query
generation and processing server 104 1s also referred to
herein as one or more server computers 104 or server(s) 104,
and may include any computing device known 1n the art
comprising one or more processors, and one or more soit-

US 11,086,360 B2

9

ware 1nstructions executed by the one or more processors
within a memory coupled to server computer 104, the
soltware 1nstructions configured to execute any of the pro-
cess or method steps disclosed herein.

To perform these query generation and processing tasks,
query generation and processing server 104 accesses knowl-
edge model database 108, which contains the knowledge
model (1.e., the concepts, nstances and relationships that
define the subject matter domain). Once a query has been
created, query generation and processing server 104
executes the query against knowledge base database 110,
which stores the knowledge base and any metadata or
annotations describing the items of the knowledge base. In
knowledge base database 110, the items to be retrieved are
generally annotated with one or more of the terms available
in the knowledge model.

A knowledge model may be constructed by hand, where
engineers (referred to as ontology engineers) lay out the
model’s concepts, mnstances and relationships and the rela-
tionships thereof. This modeling 1s a process where domain-
specific decisions need to be taken, and even though there
exist standard vocabularies and ontologies for different
knowledge domains, 1t 1s worth noting the same domain may
be modeled in different ways and that knowledge models
may evolve over time. Sometimes the knowledge model 1s
used as a base and the model’s imndividual components are
considered static, but the present system may also be imple-
mented 1n conjunction with dynamic systems where the
knowledge model varies over time.

A knowledge model may define the relationships between
a number of terms that may be present 1n the annotations or
metadata associated with different items in the knowledge
base. In that case, the knowledge model contains a schema
ol abstract concepts and their relationships. In the case of a
knowledge model for the basketball domain, for example,
the knowledge model may define concepts such as “basket-
ball player” and “team™ and their connection through the
“plays for” relationship. Optionally, the knowledge model
may also contain concrete instances with their respective
general assertions 1n the domain, such as concrete basketball
player like “Pau Gasol” or teams like “Los Angeles Lakers™,
and the relationships amongst them.

One possible implementation of the knowledge model,
considering the particular example of semantic (ontological)

that 1s purpose-built for the storage and retrieval of semantic
data 1n the form of “triples” (or “statements” or “asser-
tions”). Triplestores are well known types of databases and
are routinely implemented to managed knowledge models.
The concept of “triple” 1n this sense 1s to be understood 1n
a broad sense as a data entity that follows a subject-
predicate-object (s,p,0) pattern (e.g., subject~predicate~ob-
ject). Generally, the subject and object of a triplestore can
include concepts or instances selected from the relevant
knowledge model, while the predicate 1s a relationship also
selected from the relevant knowledge model, although other
similar data models may be used. An example triple con-
structed from two concepts and a valid relationship 1n the
basketball domain would be (*basketball player”, “plays
for”, “team”). As a possibility 1n this respect, a semantic data
model widely extended for expressing these statements 1s
the Resource Description Framework (RDF). Query lan-
guages like SPARQL are one possibility for retrieving and
manipulating RDF data stored 1n triplestores, although other
mechanisms are also possible.

The knowledge model thus contains the relationships

amongst the different types of resources in the application

10

15

20

25

30

35

40

45

50

55

60

65

10

domain. The knowledge model contains both the (ontologi-
cal) schema of abstract concepts and their relations (see, for
example, the knowledge model graph shown 1n FIG. 3) such
as (“basketball player”, “plays for”, “team”), as well as
instances with their respective general “static” assertions
valid for the whole domain, such as concrete “basketball
players” like “Pau Gasol” or “Kobe Bryant”, and their
relationship to the teams they play for, etc.

As explained above, the ontology-engineering task by
which the model 1s configured can be a manual process,
though 1t might utilize semiautomatic support by previously
identifving the kind of concepts and instances that will be
relevant for the domain.

As an example, 1n the particular scenario of triple-based
statements, the abstract concept-relationship-concept (C,r,C)

statement like (“basketball player”, “plays for”, “team”)

could be stored 1n the knowledge model as a triple statement,,
along with specific mstances in the domain such as “Pau
Gasol” (and the instance’s association to the “basketball
player concept) or “Los Angeles Lakers™ (which belongs to
the “team™ concept), and their respective relationships for
the whole domain.

In other implementations of the knowledge model, other
types of repositories, instead of triple-store-based knowl-
edge models, are also able to contain and define the entities
and relationships of the knowledge model.

The knowledge base 1s the repository that contains the
items or content that the user wishes to search and retrieve.
The knowledge base may store many 1tems including many
different types of digital data. The knowledge base, for
example, may store plain text documents, marked up text,
multimedia, such as video, images and audio, programs or
executable files, raw data files, etc. The 1tems can be
annotated with both particular 1nstances (e.g., “Pau Gasol”)
and concrete assertions (“Pau Gasol”, “plays for”, “Spanish
national team”) selected from the knowledge model, which
are particularly relevant for the given item. One possible
implementation of the knowledge base 1s a Document Man-
agement System that permits the retrieval of documents via
an 1ndex of the entities of the knowledge base. To that end,
documents in the repository need to be associated to (or
“annotated with”) those entities.

For each annotation 1n the knowledge base, both concepts
(e.g., “basketball player”) and particular instances (e. g.,
“Pau Gasol”) from the knowledge model may have been
used to build the annotation statement. If the underlying
knowledge model 1s a semantic model, the statements can
take form as triple-based (s,p,0) assertions.

In the case that the knowledge model 1s a semantic model
and 1s constructed using triple statements, there may be four
possible combinations for the triple-based statements that
can be used to annotate the items 1n the knowledge base:
(C,r,C), (CrI), (Lr,C) and (I,r,]), where °C’ stands for
“Concept”, ‘I’ stands for “Instance” and °‘r’ stands {for
“relationship”. As such, a particular item in the knowledge
base may be annotated with, respectively, abstract state-
ments that include concepts and no instances (e.g., (“bas-
ketball player”, “plays for”, “team”)), more precise state-
ments where one of the Concepts 1s replaced with an 1nstance
(e.g., (“basketball player”, “plays for”, “Los Angeles Lak-
ers”’) or (“Pau Gasol”, “plays for”, “team™)), or statements
that include no concepts and only instances and relationships
(e.g., (“Pau Gasol”, “plays for”, “Los Angeles Lakers™)).
Again, in other implementations, these types of statements
may be modified 1f the underlying knowledge model 1s not
based on triples.

22 4

22 144

US 11,086,360 B2

11

With respect to the association of triple statements to
documents in the knowledge base (1.e., annotation), different
approaches can be utilized. In particular, the process of
annotation can be performed both manually, with users
assoclating particular statements to the knowledge base
item, and automatically, by detecting which references to
concept, entities, and/or relationships appear 1n each 1tem 1n
the knowledge base, and matching them to triple-based
statements from the knowledge model. The documents 1n the
knowledge base are then indexed according to the structured
statements that appear 1n or have been associated to them.

The techniques described herein can be applied to reposi-
tortes of documents in which annotations have been per-
formed through different manners. The process of annotation
for the documents may have been performed both manually,
with users associating particular concepts and instances in
the documents to particular entities 1n the knowledge model,
and/or automatically, by detecting which references to enti-
ties appear 1 each knowledge base item. Systems may
provide support for manual annotations by facilitating the
user finding and selecting entities from the knowledge
model, so these can be associated to 1tems 1n the knowledge
base. For example, 1n a possible embodiment, the system
may ofler auto-complete functionality so when the user
begins writing a portion of a word, the system might suggest
a potential completion for the word. The user may decide
then to annotate a given 1item with the chosen instance, 1.¢.,
to specily that the entity from the knowledge model 1s
associated to the particular 1tem in the knowledge base.

When automatically creating metadata for the knowledge
base items, techniques like text parsing and speech-to-text
over the audio track or a multimedia item can be used along
with 1mage processing for videos. In this manner, it 1s
possible to associate each of the 1tems in the knowledge base
(or even portions of the items), with the entities (e.g.,
concepts, istances, and relationships) that are present 1n the
relevant knowledge model. This process 1s dependent on the
knowledge model because the 1dentification of entities in the
knowledge base item 1s performed in reliance upon the
knowledge model. For example, the visual output of certain
documents (e.g., 1mages or video) can be analyzed using
optical character recognition techniques to identity words or
phrases that appear to be particularly relevant to the docu-
ment. These words or phrases may be those that appear often
or certain words or phrases that may appear 1n a correspond-
ing knowledge base. For example, when operating in the
sports knowledge domain, when a document includes words
or phrases that match particular concepts, 1nstances, rela-
tionships, or entities within the knowledge domain (e.g., the
document includes the words “football”, “Pele”, and “World
Cup”’) the document can be annotated using those terms as
they relate to either concepts, instances, or relationships in
the knowledge model. For documents containing audio, the
audio output can be analyzed using speech to text recogni-
tion techmques to 1dentily words or phrases that appear to be
particularly relevant to the document. These words or
phrases may be those that are articulated often or certain
words or phrases that may appear 1n a corresponding knowl-
edge base. For example, when operating in the sports
knowledge domain, when a document includes people dis-
cussing particular concepts, instances, or relationships
within the knowledge domain, the document can be anno-
tated using those terms.

Additionally, a combination of approaches (semiauto-
matic techniques) 1s also possible for annotating the knowl-
edge base. The result of such annotation techmiques 1s that
the 1tems 1n the knowledge base repository are then mndexed

10

15

20

25

30

35

40

45

50

55

60

65

12

with metadata according to the entities (knowledge model
concepts, instances and/or relationships) that appear i or
have been associated to the items.

In the case of manual annotation, terms that belong to the
knowledge model are associated with the items in the
knowledge base. Diflerent techniques for encouraging users
to participate in the manual annotation of content may be
applied, like the use of Games with a Purpose to leverage the
user’s interactions while they play. Again, the underlying
knowledge model and the model’s design define the kinds of
annotations that can be applied to the items 1n the knowledge
base.

The searches of the knowledge base 110 1n this disclosure
are primarily formulated and executed as semantic searches,
in which server 104 1dentifies annotations within the assets
in the knowledge base 110 that match one or more triples
used within the search query. However, this should not limit
the scope of this disclosure. Searches may also take place on
a syntactic level, meaning that server 104 matches a string
in the search query to a string 1n the title or content of the
clectronic files 1n the knowledge base 110.

In this disclosure, a valid semantic query includes a valid
combination of concepts, instances of those concepts, and/or
relationships consistent with the ontologies within the
knowledge model database 108. If the concepts, instances,
and/or relationships in a semantic query are not consistent
with the concepts, 1nstances, and/or relationships i the
ontologies within the knowledge model 108, any result set
produced from the semantic query will be empty.

As noted above, 1t may be diflicult for a user to formulate
and execute an eflective query, because the user may not
have a detailed knowledge of the ontology structure within
the knowledge model 108, and therefore may not know how
to structure a semantic query to search assets within the
knowledge base 110. To address this problem, server 104 in
the disclosed system may be configured to simplily the data
input required from the user to create and execute such a
semantic query. This simplification may be made according
to the fixed triple pattern above, namely <concept/instance>
<relationship> <concept/instance>. Server 104 may there-
fore construct a semantic query representing the concepts,
instances, and/or relationships from the ontologies within a
knowledge model 108. For example, 1f server 104 were to
analyze the semantic query <conceptl> <relationship>
<concept2>, server 104 would 1dentity, within the knowl-
edge model 108, all possible concepts as well as all possible
relationships between concept 1 and concept 2. While this 1s
the most generic predefined semantic query template, it 1s
tully supported and valid.

In another example, server 104 may generate a query,
based on the ontologies within the knowledge model 108, of
“movie <relationship> English,” which has one parameter
representing a semantic query including a relationship
between “movie” and “English.” Using the parameters of
this semantic query, server 104 may select all data records
in the knowledge model 108 associated with all possible
relationships that exist between “movie” and “English”.
Server 104 may then generate a list of the 1dentified rela-
tionships that would be valid to replace the parameter
<relationship>. Server 104 may then generate a Ul (possibly
the predefined semantic query template described below)
that includes one or more Ul controls. These Ul controls
may be populated with a menu listing the relationships from
the selected data records, each selection option naming a
relationship from each data record.

Similarly, 1t server 104 were to analyze the semantic
query “movie shorterthan <duration-in-hours>"", server 104

US 11,086,360 B2

13

may 1dentily concepts and/or instances of concepts from
data records within the knowledge model 108 that are valid
values to act as replacements for the parameter “duration-
in-hours.” For example, server 104 may select all data
records including instances (or concepts themselves) asso-
ciated within the knowledge model 108 with the concept
duration-in-hours, and i1dentity, within the returned records,
“l1 h,”“2 h,” “3 h,” or “duration-in-hours” as valid values to
replace the parameter <duration-in-hours>.

In this disclosure, contextualization or instantiation may
be defined as replacing a parameter with a value and/or
replacing a concept with an instance of that concept, as
defined by the ontology in the knowledge model 108. The
user may therefore mput or select “1 h,” “2 h,” “3 h,” or
“duration-in-hours™ as values to contextualize or instantiate
the concept. The parameter <duration-in-hours> could be
replaced with the concept “duration-in-hours” itself. In this
case the query would return all movies that are shorter than
any of the instances or sub-concepts, eflectively returning all
movies shorter than 3 h. Relationships may also be param-
cterized. For example, 1n the example above, “movie <rela-
tionship> English,” users may define the particular relation-
ship that should be queried. Other relationships for this triple
may include “production-language,” “translation-language,”
“subtitle-language,” and so on.

FIGS. 13-14 are screenshots 1llustrating a Ul enabling a
user to i1nitiate and perform a simple semantic query in
accordance with the present disclosure. In some disclosed
embodiments, server 104 hosts a web server configured to
generate and transmit to client 102 the Uls depicted 1n the
disclosed screenshots 1n the figures. In these embodiments,
the Uls may be depicted or implemented as web pages,
though any other technologies for generating Uls for client
102 may be utilized.

All Uls disclosed herein, as demonstrated by the figures,
may be selif-contained, meaning that no specialized work-
space 1s required to display correct concepts, relationships or
instances. The disclosed Uls are therefore portable and
capable of being embedded into any known display format
(e.g. existing web pages or desktop user itertaces). All Uls
may further be customized to a user’s level of expertise with
the knowledge model 108. The Uls may therefore be pre-
sented to a user using any graphical representation, or 1n a
text and/or terminal-based format at any level of detail (e.g.,
including parameter constraints, as discussed below).

In order to generate the Uls, server 104 may generate and
execute a database query of the knowledge model 108, and
analyze the resulting data records to identily all concepts,
instances, and/or relationships to be used in triples making
up the ontologies within the knowledge model 108. Using
these ontologies, server 104 may render the Ul by generating,
UI controls, such as the example combo boxes 1n the figures,
for receiving mput from users replacing the parameters,
according to the <concept/instance> <relationship> <con-
cept/instance> pattern.

Server(s) 104 may transmit the Ul to client 102 for
display. The user may replace the parameters via character
input and/or selection and submit the search, possibly by
clicking on a generated “Search” button. The user mput to
replace the parameter with the selected concept, 1nstance,
and/or relationship may include any combination of a char-
acter string input by the user, or a selection by the user from
a generated list. As noted above, the list may be populated
by server 104 using the concepts, instances, and/or relation-
ships 1dentified from analysis of the data records resulting
from the query of the concept model database 108.

10

15

20

25

30

35

40

45

50

55

60

65

14

In FIG. 13, the user has replaced the first concept/instance
parameter with the concept [movie], indicating that all assets
in the knowledge base 110 that are annotated with instances
and subgroups of this concept should be included 1n the
search results. Similarly, the user has replaced the relation-
ship parameter with the relationship “contains,” and has
replaced the second concept/instance parameter with the
instance “FlyingCar.”

The user may then submit the semantic query (including,
the triple created from the replaced parameters) to server
104. Server 104 may execute a database query of the
knowledge base 110, identifying each of the assets annotated
with the triple <movie> <contains> <FlyingCar> (or, in the
case of FIG. 14, <ShortMovie> <contains> <FlyingCar>,
including a subset/instance of [movie]) within the knowl-
edge base 110. Server 104 may then generate a list of
available assets within the knowledge base 110 matching the
submitted triple(s), possibly as a dropdown as seen 1n FIG.
14, and transmait the containing Ul to client 102 for display.
The user may then select the desired asset(s) from the list to
access them from the knowledge base 110.

In one implementation, the query 1s constructed by the
server(s) using a template, where the template describes a
candidate relationship between search terms, where the
candidate relationship i1s one found in the relevant knowl-
edge model and the search terms, 1n one implementation,
may be concepts selected from the same knowledge model.
Query processing server 104 provides the candidate tem-
plate to the client 102 and receives, 1n response, a query
having a structure that 1s compliant with the candidate
template. Query processing server 104 then uses the tem-
plate-based query to query a knowledge base to generate a
listing of 1tems in the knowledge base that satisiy the
template-based query.

Each of the assets within the knowledge base 110 may be
associated with any number of annotations, including any
number of triples. Users may desire to refine their semantic
search to better 1dentily one or more specific assets within
the knowledge store by increasing the number of triples used
to match with the annotations associated with the assets in
the knowledge store. To accommodate this desire, server 104
may be configured to generate a Ul including one or more
UI controls for receiving additional parameters for addi-
tional triples used to execute the semantic search of the
knowledge store.

For example, the Ul control(s) may include a button or
link that, when selected by the user, causes server 104 to
generate an additional set of Ul controls, for display on
client 102, configured to recerve the parameters for one or
more additional triples from the user. Each additional set of
Ul controls may further include Ul controls configured to
receive mput from the user identifying a Boolean or group-
ing operator defining the relationship between and among
the one or more triple parameters input by the user.

For example, a user may desire to find a movie 1n the
knowledge store that 1s shorter than a specific length of time,
and that 1s produced 1n a specific production language. The
user may therefore mput triples contaiming the parameters
<movie> <shorter-than > <duration-in-hours>. The user
may then select a Ul control, such as a button, link,
dropdown menu, etc., indicating that the user wants to add,
and or group additional triples to the original triple. In
response, server 104 and/or client 102 may generate addi-
tional Ul controls for the user to input additional parameters
for additional triples, such as <movie> <production-lan-
guage> <language™>. The additional Ul controls may also be
configured to receive input from the user indicating a

US 11,086,360 B2

15

Boolean value to connect the triples (e.g., and, or, not), as
well as grouping operators, such as parentheses, to group
one or more of the triples, indicating the order in which the
triples should be used to identily the annotations for the
assets 1n the knowledge base 110. The final semantic search,
in this example, would therefore include <movie><shorter-
than ><duration-in-hours><AND><movie><production-
language><language>.

FIGS. 15-16 are screenshots illustrating a Ul enabling a
user to initiate and perform a complex semantic query in
accordance with the present disclosure. Server 104 may
generate a Ul according to the method steps disclosed above.
In addition to the parameter Ul controls, the Ul may include,
as seen 1n FIGS. 15-16, menus for selecting Boolean opera-
tors and/or parentheses/brackets for grouping multiple
triples.

Server 104 may transmit the Ul to client 102 for display.
In addition to replacing parameters as disclosed above, the
user may select from a menu of Boolean operators (e.g., and,
or, not, using the dropdown menu 1 FIGS. 15-16). In
response to the selection of the Boolean operator, server 104
and/or client 102 may generate an additional set of param-
cters for the user to select 1n order to create an additional
triple (which may also have Ul controls for Boolean opera-
tors or grouping brackets). The user may select the Boolean
and/or grouping operators for the user’s generated triples
(e.g., <[movie]/ShortMovie> <contains> <FlyingCar>
<AND> <[movie]> <1sOflype> <Documentary> 1 FIGS.
15-16), and submit the query.

Server(s) 104 may execute a database query of the knowl-
edge base 110 as disclosed above. However, the database
query of the knowledge base 110 will only include those
movies that are short movies, contain flying cars, and are of
type documentary, according to the complex query gener-
ated by the user, as seen 1n FIGS. 15-16.

Individual parameters within the predefined semantic
query (or any semantic query) may be replaced by a fully
contextualized semantic query template, which may be
bound to the original predefined semantic query. For
example, the triple<genre> <of> <movie> will return all
genres of all movies (since movie 1s not further contextu-
alized). However, the query <genre><of>(<movie> <pro-
duction-location> <US>) would first determine all movies
produced 1n the US, then use the movies returned from that
query as contextualization for determining the genre.

FI1G. 17 1s a screenshot illustrating a Ul enabling a user to
initiate and perform an embedded semantic query in accor-
dance with the present disclosure. Server 104 may generate
a Ul according to the method steps disclosed above. In
addition to the parameter Ul controls, the Ul may include, as
seen 1 FIG. 17, a link or menu for embedding a semantic
query as a replacement for one of the parameters in the
semantic query.

Server 104 may transmit the Ul to client 102 for display.
The user may select an additional semantic query triple as a
replacement to one of the parameters. For example, in FIG.
17, the user has replaced the first concept/instance parameter
with the triple (Movie shorterEqualThan 30 Minutes).

After the user submits this query, server 104 may execute
a database query of the knowledge base 110 as disclosed
above. However, the database query of the knowledge base
110 will first identily all movies shorter than or equal to 30
minutes in length, then from that group, 1dentily all of those
movies containing a flying car as seen 1n FIG. 17.

The disclosed systems and methods may include a tem-
plate generated from a predefined semantic query. Pre-
defined semantic queries, as used in this disclosure, may

10

15

20

25

30

35

40

45

50

55

60

65

16

include semantic queries that can be reused by users. The
generated predefined semantic query template may include
defined or undefined parameters within the predefined
semantic query that may be replaced with other valid values
as determined by the ontologies 1n the knowledge model.
For example, in the triple <movie> <shorter-than> <dura-
tion-in-hours>, the symbols “<” and “>” may indicate a
parameter used 1n the predefined semantic query that may be
replaced by other valid triple values 1n the knowledge model
108. Once a semantic query has been created, server 104
may store the template for the predefined semantic query
within a template repository 112 as a template which may be
reused. Template repository 112 1s a database storing a
number of templates for potential queries of knowledge base
110.

Reuse of a predefined semantic query template may
include simply re-executing the query, or modifying or
updating the query as needed by the user. In this disclosure,
contextualization refers to this process of adjusting an
existing query to a user’s specific needs. For example, an
original semantic query may have been for a document
referencing the Hubble Space Telescope, but the user may
update the original query to replace a document search for
the Hubble Telescope with a search for a video. Similarly, a
user may replace the value 2 h 1in the predefined semantic
query <movie> <shorterthan> <2 h> with 1.5 h, so that the
updated query 1s contextualized to become <movie> <shor-
terthan> <1.5 h> prior to execution of the query.

When a user wishes to query knowledge base 110, query
generation and processing server 104 may access template
repository 112 to retrieve a number of candidate templates
therefrom, where the candidate templates describe candidate
structures for queries of knowledge base 110. Those candi-
date templates can then be provided to client 102 for
selection. Once a candidate template has been selected and
completed by client 102, query generation and processing
server 104 receives the completed query and executes the
query against knowledge base 110.

The template repository 112 (see FIG. 1) contains a
collection of templates (abstract statements) that relate one
or more concept, instance, or relationship from the knowl-
edge model. The templates can be used to assist users in the
construction of specific queries that may be executed against
the knowledge base. The notion of a template as “abstract
statement” refers to an assertion composed of entities that
can be modified (“instantiated”) by the user. In general, the
templates will be composed of abstract concepts (as opposed
to concrete 1nstances) and a valid relationship that links the
concepts, but 1t 1s also possible to implement the system
using different types of templates, e.g., that relate one
instance and one concept.

The set of possible templates for a given knowledge
model, therefore, will normally be a subset of the global set
of potential statements available 1n the knowledge model. In
the specific implementation, where the knowledge model 1s
constructed using triple-based statements, the templates may
be 1n the form of concept-relationship-concept (C.r,C)
triples like (“basketball player”, “plays for”, “team”).

When creating a search, users are presented with one or
more templates. The user can then replace one or more of the
concepts 1n the template with specific instances (thereby
“instantiating’” the template) to create a statement, thereby
making the template more precise. These statements can
then be added to a query, which can then be executed against
the knowledge base. In the specific case of semantic triple-
based templates, the user may modily either the subject or
the object 1n the template to create a statement that may be

US 11,086,360 B2

17

added to a query. Again, variations of this approach may be
implemented are possible; for example, the system may
alternatively allow the user to change the relationship 1n the
template, but not the entities, efc.

In general, the construction of the templates can be
dependent on the particular implementation of the underly-
ing knowledge model. As such, the concept-relationship-
concept (C,r,C) template discussed above i1s thus just a
possible template 1n the case of triple-based statements, but
other template configurations could be implemented for
different types of knowledge models. Additionally, the tem-
plates may also feature other kinds of elements, e.g., opera-
tors to be applied 1n combination with the abstract statement
itself. Some embodiments may also consider different
approaches towards the templates 1n the template repository
upon the modification of the knowledge base, e.g., 1f con-
cepts are deleted or modified in the knowledge model. One
possibility 1s that templates are deleted or modified accord-
ingly, but it may also be the case that templates are left
untouched independently of the modifications in the knowl-
edge base.

Depending upon the system implementation, different
processes for creating a suitable list of candidate templates
may be utilized. In one implementation, a set of templates
can be created or selected manually. In that case, individuals
tamiliar with the knowledge model and the types of searches
that are likely to be executed against the target knowledge
base may decide which candidate templates would be of
special relevance 1n the context of the given knowledge
model. Those templates may then be made available for use
in querying the knowledge base. Alternatively, the genera-
tion of candidate templates may take place through auto-
matic algorithms, for example by detecting those combina-
tions ol entitiecs within the knowledge model that are
particularly relevant in relation to the knowledge base
through the knowledge base’s annotations. Finally, embodi-
ments may also consider the combination of manual and
automatic techniques for the detection and creation of suit-
able candidate templates.

FIG. 2 1s a block diagram showing the functional com-
ponents of query generation and processing server 104.
Query generation and processing server 104 includes a
number of modules configured to provide one or more
functions associated with the present information retrieval
system. Each module may be executed by the same device
(e.g., computer or computer server), or may be distributed
across a number of devices.

Template choice reception module 202 1s configured to
select a number of candidate templates from template
repository 112 and allow a user to select one or more of the
candidate templates (e.g., using client 102). Template choice
reception module 202 may also enable the user to instantiate
one or more of the selected templates to create statements by
entering specific information into one or more fields within
the selected template.

Query generation module 204 1s configured to generate a
structured query using the templates selected and modified
by the user (e.g., using client 102) and any additional query
terms or phrases that may be provided by the user.

Once a query 1s created, knowledge base search module
206 1s configured to take the query generated by query
generation module 204 and execute the query against the
desired knowledge base.

Results output module 208 1s configured to retrieve the
items (or links thereto) that are relevant to an executed query
(performed by knowledge base search module 206) executed
against the knowledge base and provide an appropriate

10

15

20

25

30

35

40

45

50

55

60

65

18

output to the user via client 102. In addition to the items
themselves, results output module 208 may be configured to
generate statistics or metrics associated with the resulting
items and depict that data to the user. Results output module
208 may, for example, also depict a graph showing the
relevant knowledge model entities that are present in the
search results. Results output module 208 may also display
one or more available templates (including, possibly, the
templates as-modified by the user) thereby enabling the user
to add templates, or modily the selected templates 1n order
to further refine a search query.

FIG. 3 1s a flowchart 1llustrating a method for building a
structured query using templates. Generally, the method
includes two steps, first query generation, and then a knowl-
edge base search. During query generation (see step 302),
the user selects one or more templates for a particular
knowledge model 108 from template repository 112. The
user can then enter specific data into one or more of the
templates (for example, by replacing the concepts 1 a
particular template with specific instances) to instantiate the
template and thereby create a statement. One or more
statements can then be combined into a query. In some
implementations, the user can provide additional search
terms, keywords, or natural language that can be 1ncorpo-
rated into the query along with the statements. In step 304,
the information provided by the user (including instantiated
templates and additional search terms) 1s combined to form
a query. In step 306, the query generated in step 304 is
executed against knowledge base 110. After performing the
query, a set of results 1s generated 1n step 308 that may be
displayed for the user.

The outcome of the process illustrated 1n FIG. 3 15 a set
of results that includes a list of 1tems having metadata that
matches the structured query specified by the user. For
simplicity, FIG. 3 illustrates the approach 1n a single 1tera-
tion. However, the process may be repeated any number of
times, alternating between the generation of queries and
their use to search over the knowledge base. This approach
enables searching in an iterative manner, making 1t possible
to refine the search results through the addition of new
statements to the query, or by modifying or deleting the
existing ones.

In some cases, the user may add multiple instantiated
templates (also referred to as statements) to a query. FIG. 4,
for example, 1s a flowchart 1illustrating a query generation
process 1n which a user may add multiple statements to a
query. The method depicted 1n FIG. 4, for example, may be
a sub-process performed as part of step 302 of FIG. 3.
Referring to FIG. 4, 1n step 402 the user selects a template
from a number of candidate templates (e.g., provided by
template choice selection module 202 of query generation
and processing server 104). The user can then revise the
selected template, for example by modilying the template to
replace concepts with specific istances, thereby creating a
statement. Once created, the statement may be added to the
query (e.g., by query generation module 204). In step 404
the user decides whether to add an additional template or
statement to the query. If so, the method returns to step 402
and the user can select an additional template 1 order to
create another statement. If not, 1n step 406 the completed
statement or revised templates can be added to a query for
executing against a knowledge base.

The user may add any number of statements (or com-
pleted templates) to a query, by making use of the templates
from template repository 112 and then contextualizing the
templates by instantiating parts of the templates with ele-
ments from the knowledge model to create statements.

US 11,086,360 B2

19

FIG. § 1s a flowchart illustrating a method for the addition
of a new statement to a query. In step 502, the user selects
a template from template repository 112. When selecting
from existing templates, the user may be presented with a
list of existing templates in the template repository 112, from 5
which one or more templates may be selected. Alternatively,
the user can navigate through existing templates by search-
ing for the templates 1n a tree structure, or through a query
box, etc.

Besides choosing a template from the repository, 1t might 10
be the case that the system allows for the creation of new
templates. When creating a new template, the user may
combine concepts from the knowledge model 108 through
valid relationships 1n order to construct a template. After a
new template 1s constructed, the user may choose to store the 15
new template 1in template repository 112 so that the new
template becomes available for future searches and may be
available for other users. In the specific case of triple-based
statements, the user may combine two different concepts
through a valid relationship 1n order to create a new (C,r,C) 20
template.

FIGS. 8A-8B are screenshots 1llustrating a user interface
enabling a user to select a template in accordance with the
present disclosure. In FIG. 8A user interface 800 1s pre-
sented allowing a user to 1nitiate a search. The user interface 25
may be presented to a user, for example, after the user has
iitiated a search activity for a particular subject matter
using search client 102 (see FIG. 1). This may mvolve
accessing query generation and processing server 104 via
communication network 106. In one implementation, query 30
generation and processing server 104 hosts a web server
configured to generate and transmit to client 102 the user
interfaces depicted in FIGS. 8 A-8D, 1n which cases the user
interfaces may be depicted or implemented as web pages,
though any other technologies for generating user interfaces 35
for client 102 may be utilized. The user interfaces may be
hosted on a remote device, such as query generation and
processing server 104 or may be local to client 102.

User interface 800 includes a pull down menu 802 that,
when activated by the user provides a list of candidate 40
templates for the current knowledge model. The user may
also click upon link 804 to initiate the process for creating
a new template that may be utilized in a particular search.
Finally, interface 800 includes a region displaying a list of
previously-used templates that may be selected by the user. 45

In this example, the user activates pull down menu 802 to
generate a list of candidate triples that may be selected. FIG.
8B 1illustrates user interface 800 after the user has selected
pull down menu 802 to generate a listing of candidate
templates associated with the current knowledge model. In 50
this example associated with FIG. 8B the knowledge model
1s associated with the domain of film, theatre, and television.

As such, candidate triples 810 displayed include *“Assets
with movie that belongs to genre” or “Assets with movie
directed by director.” When the user identifies a triple that 1s 55
useful for the user’s desired search, the user can select the
triple by clicking upon the desired triple statement. In this
example, the user clicks upon the triple statement “Assets
including movie with actor.”

Regardless of the way through which the template 1s 60
selected, the template’s type may be diflerent depending on
the underlying knowledge model. As described above, if the
knowledge model 1s semantic and based on triples, one
option 1s that the selected template 1s of the (C,r,C) type.

The author of a predefined semantic query template (e.g., 65
a system administrator or a user re-executing a previous
semantic query) may identify restrictions or constraints on

20

cach of the parameters within the triple(s) that make up the
predefined semantic query template.

For example, a predefined semantic query template may
include the triple <movie> <that-belong> <genre>. The
author of this predefined semantic query template may
restrict the parameter <movie> to US movies only, so that
the <movie> parameter 1s restricted by the triple <movie>
<production-location> <US>. The contextualization
received by the author may therefore restrict the movies that
can be chosen for a specific genre, and will be returned as
a knowledge base 110 result, to movies produced in the US.

Predefined semantic query parameter restrictions may be
distinguished from multiple triples jomned by a Boolean
value, 1n that the parameter constraints are part of the
semantic query itself. Specifically, the parameter constraint
restricts a specific parameter within a single triple, whereas
Boolean values join two separate triples. Put another way, a
parameter constraint restricts the possible values of the
parameter used 1n contextualization, whereas a Boolean
constraint restricts the values 1n the result set.

FIGS. 18-19 are screenshots illustrating a Ul enabling a
user to mitiate and perform a semantic query with restric-
tions or constraints in accordance with the present disclo-
sure. Server 104 may generate a Ul according to the method
steps disclosed above. In addition to the parameter UI
controls, the Ul may include, as seen in FIGS. 18-19, menus,
text boxes, and/or combo boxes for each of the parameters,
defining a restriction or constraint on that parameter.

Server 104 may transmit the Ul to client 102 for display.
In addition to replacing parameters as disclosed above, the
user may select or otherwise input a parameter constraint on
one or more of the concepts, istances, and/or relationships
within one or more triples displayed on the client (e.g., the
[movie] concept parameter 1s restricted to movies # longer-
Than 1 Hour# in FIGS. 18-19). In response to the mput or
selection of each input parameter constraint, server 104
and/or client 102 may generate a data record storing the
constraint, associated in one or more of the disclosed data-
bases 108, 110, 112, in association with the appropnate
parameter. The user may then execute the query according to
the parameter constraint, (e.g., <[movie| # longerThan 1
Hour#> <contains> <FlyingCar/[vehicle]> in FIGS. 18-19),
and submit the query.

Server(s) 104 may execute a database query of the knowl-
edge base 110 as disclosed above. However, the database
query ol the knowledge base 110 will only include those
movies that are longer than one hour, and contain flying cars
and/or other vehicles, according to the parameter con-
straints, as seen in FIGS. 18-19.

Users may store predefined semantic query templates 1n
association with a unique identifier created by the user. The
user may 1nput this unique identifier, such as a human
readable template name (though any identifier mechanism
may be used), store the associated predefined semantic
query template 1n the template repository 112, and later input
the unique 1dentifier into a template Ul as a type of short-
hand allowing the user to re-execute the associated pre-
defined semantic query.

When recalling the predefined semantic query template
via the umique 1dentifier, the user may also contextualize the
predefined and stored query, by either modilying the param-
cters of the original query, adding additional triples and/or
parameters, and/or contextualizing/instantiating the addi-
tional triples/parameters. This principle also applies to root
query templates, described below, but may be limited by
referred-to templates that have already been executed. The
modified query, based on the semantic query template ret-

US 11,086,360 B2

21

erenced by the unique 1dentifier, may therefore inherit all of
the parameters referenced in the predefined semantic query
template referenced by the unique identifier.

This semantic query template inheritance may therefore
be viewed as a composition of existing semantic query
templates. These existing semantic query templates may
also be combined into additional templates, creating a “root™
semantic query template, which 1s assigned its own unique
identifier, and which references the unique 1dentifiers of two
or more predefined semantic queries. Thus, the root seman-
tic query templates may include a recursive structure of
semantic query templates referring to other semantic query
templates to any depth.

For example, a first semantic query template may be
assigned the unique 1dentifier GenreMovie, referring to the
semantic query template <genre><of> <movie>. A second
semantic query template may be assigned the unique 1den-
tifier ShortMovie, referring to the semantic query template
<movie><shorter-than><30 Minutes>. The root template
combining these two semantic query templates may be
GenreShortMovies: GenreMovie and ShortMovie, which
searches for all genres of all movies that are shorter than 30
minutes.

Because the root semantic query template references
referred-to semantic query templates, the semantics of a root
semantic query template may change 1f one or more
referred-to semantic query templates change. For example,
i the parameters of ShortMovie above changes to <movie>
<shorter-than> <135 Minutes>, then the root semantic query
template GenreShortMovies implicitly changes, too. From
the point of that change forward the genres of movies shorter
than 15 minutes, rather than shorter than 30 minutes are
queried. To avoid this, the author of GenreShortMovies may
create a copy and refer to those copies by value, rather than
referring to existing copies by name.

Additional values may be added to the root semantic
query templates as well, to further contextualize the tem-
plate. For example GenreShortMovies: GenreMovie and
ShortMovie may be contextualized to include the parameter
GenreShortMovies: GenreMovie(Minions) and Short-
Movie. In this case GenreMovie 1s contextualized by refer-
ring to a movie by the name of “Minions.” This value 1s
taken as the parameter value for “<movie>" 1n the “Genre-
Movie” semantic query template. The results of the root
semantic query template includes the movie “Minions,”
assuming that i1t fits the required parameters for a short
movie.

FIGS. 20-21 are screenshots illustrating a Ul enabling a
user to define a predefined semantic query template accord-
ing to a unique identifier (e.g., :FlyingCarMovies:), expand
the parameters received through inheritance by referencing
the unique 1dentifier (e.g., adding Boolean AND as well as
the <[movie]> <createdIn> <[country]> triple), and initiate
and perform a semantic query according to the parameters
inherited by the referenced unique i1dentifier, and any addi-
tional parameters, 1n accordance with the present disclosure.
Server 104 may generate a Ul according to the method steps
disclosed above. In addition to the parameter Ul controls,
the Ul may include, as seen in FIGS. 20-21, menus, text
boxes, and/or combo boxes for identifying the unique 1den-
tifier, stored and executed in association with each of the
parameters in the predefined query.

Server 104 may transmit the Ul to client 102 for display.
In addition to replacing parameters as disclosed above, the
user may select or otherwise mput a umque 1dentifier
associated 1n one or more of the databases with the one or
more of the concepts, instances, and/or relationships within

5

10

15

20

25

30

35

40

45

50

55

60

65

22

one or more triples displayed on the client (e.g., :FlyingCar-
Movies: includes the triple <[movie]> <contains> <Fly-
ingCar> 1n FIG. 20, and immhernits <[movie]> <contains>
<FlyingCar>, but 1s further combined with the triple
<[movie]> <createdIn> <[country]> 1n FIG. 21). In response
to the input or selection of each unique identifier, or any
additional triples or parameters added in addition to those
inherited by the referenced unique identifier, server 104
and/or client 102 may generate a data record storing the
triples and/or parameters associated with the unique 1denti-
fier 1n one or more of the disclosed databases 108, 110, 112.
The user may then execute the query according to the
inherited triples and/or parameters, as well as any additional
triples/parameters combined with the inheritance (e.g.,
<[movie]> <contains> <FlyingCar> AND <[movie]|> <cre-
atedIn> <[country]> in FIGS. 20-21), and submit the query.

Server(s) 104 may execute a database query of the knowl-
edge base 110 as disclosed above. However, the database
query of the knowledge base 110 will include all those
triples and/or parameters associated with the unique 1denti-
fier, as well as those triples/parameters later added to the
inherited triples/parameters associated with the unique 1den-
tifier, which, would include movies that contain flying cars
and are created 1n all countries, according to the inherited
and additional parameters, as seen in FIGS. 20-21.

Server(s) 104 may be configured to i1dentily concepts,
instances, and/or relationships in the knowledge model that
are similar to the concepts, instances, and/or relationships
within the parameters of semantic query templates input by
a user. Server(s) 104 may identity these similar semantic
query templates according to templates that (a) have some or
all of the same triples as the input template, or (b) have some
or all of the same concepts, instances or relationships as the
input template.

Using these identified similarties, server(s) 104 may
generate, and transmit to the client for display, a list of
semantic query templates similar to that input by the user, as
alternatives to the mput semantic query template. Server(s)
104 may order the alternative semantic query templates
according to the results from (a) above, descending by the
number of matching triples and from (b) above, descending
by the number of matching concepts, instances and relation-
ships. The results from (a) come before (b) as similarity
based on triples 1s more relevant than similarity based on
concepts, mstances and relationships only.

Server 104 may also be configured to store, 1n association
with each semantic query template data records stored, a first
date data field recording the date of entry of the template,
and one or more additional data entry fields recording each
time the user accesses the predefined semantic query or
template. Using these data fields, the semantic query system
may therefore keep a record/history of executed semantic
queries. In some embodiments, these data records may also
include details about the relationship of the executed query
to the corresponding semantic query templates. The user
may then reference one or more similar semantic query
templates based on the history of corresponding semantic
query templates. The user may search according to criteria
for searching similar semantic query templates 1n a semantic
query template catalog, discussed 1n more detail below. In
some embodiments, the history may be ordered according to
the most frequently used semantic query templates, with
more recently used or frequent semantic query templates
being ranked higher than less recently or frequently used
ones.

Over time many predefined semantic query templates may
be created and available for users. These predefined seman-

US 11,086,360 B2

23

tic query templates may be stored 1n a semantic query
template catalog (template catalog). User’s may browse this
template catalog in order to search for a specific template.
However, as the template catalog continues to grow (e.g.,
possibly reaching hundreds or even thousands of templates)
it becomes 1mpractical for the user to browse and/or search
the catalog without a clearly structured user interface. Thus,
to 1mprove the user’s search ability, the template catalog
may 1include an index of semantic query templates. This
index may include an index of the concepts, mstances or
relationships used 1n the semantic query templates, thereby
improving the efliciency associated with searching and
querying the catalog.

Users may add semantic query templates to the template
catalog, or may add or modily successtully used semantic
queries, and store the successtul query or modification as a
predefined semantic query template. Another alternative 1s
for the user to construct a template from its concepts,
instances and/or relationships without relying on existing
queries or templates and contextualizing the constructed
query to match the user’s desired template parameters.

The server(s) 104 may also generate predefined semantic
queries automatically by accessing the knowledge model
and deriving the predefined semantic queries from the
knowledge model. For example, for every concept the
system can follow all possible relationships to the concept
referred to by the relationships. This will result 1n all
possible triples starting from a concept. The generated
triples will all be valid semantic queries when the referenced
concept 1s parameterized. Thus, the template catalog may be
made up of the automatic generation of generated and
available semantic query templates.

In some embodiments, server(s) 104 may dynamically
generate templates according to the selection of templates by
the user from the template catalog. This approach would not
require storage space for generated semantic query tem-
plates, since the templates would be generated according to
those templates, selected, but not browsed, by the user. In
some embodiments, server(s) 104 may identily the most-
searched concepts and generate predefined semantic queries
based on user’s search behavior.

In order to avoid unconstrained additions of semantic
query templates a review process can be enforced that
ensures that proposals for semantic query templates are
examined {irst and only added after no 1ssues have been
found (like for example duplicates or inconsistent use of
concepts, relationships or mstances). This mvolves submit-
ting proposals for predefined semantic query templates by
users and their examination by reviewers. Approved seman-
tic query template may then be added by an administrator, or
the original submitter can be given the access right to add the
proposed predefined semantic query.

A user may search the predefined semantic queries
according to the user’s intended context. The user may start
from a predefined semantic query designed to find other
predefined semantic queries 1n the semantic query template
catalog. This 1nitial predefined query may include the triple
“<predefined-query> <contains-concept> <concept>". This
includes all predefined queries that refer to a specific con-
cept and the semantic search system will provide the pos-
sible values for the parameter <concept>.

The disclosed system 1s able to search semantic query
templates using an 1mplicit ontology 1n the knowledge base
that represents the concepts of semantic query templates.
The presence of this ontology allows semantic query tem-
plates to be used to search for other semantic query tem-
plates.

10

15

20

25

30

35

40

45

50

55

60

65

24

More directed searches are possible using Boolean opera-
tors. For example: “predefined-query contains-concept
<concept> and predefined-query contains-relationship
<relationship>". With proper contextualization this supports
the search for predefined quernies. For example, “predefined-
query contains-concept movie” would return all predefined
semantic queries that refer to the concept “movie”.

The screenshots illustrated 1 FIGS. 20-21 include a Ul
enabling a user to search the template catalog using one or
more predefined semantic query templates according to a
unmique 1dentifier (e.g., :FlyingCarMovies:). This Ul also
expands the parameters received through inheritance by
referencing the unique identifier (e.g., adding Boolean AND
as well as the <[movie]> <createdIn> <[country]> triple).
The user may further 1nitiate and perform a semantic query
according to the parameters inherited by the referenced
unique 1dentifier, and any additional parameters, 1n accor-
dance with the present disclosure. Server 104 may generate
a Ul according to the method steps disclosed above. In
addition to the parameter Ul controls, the Ul may include, as
seen 1n FIGS. 20-21, menus, text boxes, and/or combo boxes
for 1identifying the unique 1dentifier, stored and executed 1n
association with each of the parameters 1n the predefined
query.

Server 104 may transmait the Ul to client 102 for display.
In addition to replacing parameters as disclosed above, the
user may also select or otherwise mput a unique 1dentifier
associated 1n one or more of the databases with the one or
more of the concepts, instances, and/or relationships within
one or more triples displayed on the client (e.g., :FlyingCar-
Movies: includes the triple <[movie]> <contains> <Fly-
ingCar> 1n FIG. 20, and imhents <[movie]> <contains>
<FlyingCar>, but i1s further combined with the triple
<[movie]> <createdIn> <[country]|> 1n FIG. 21). In response
to the input or selection of each unique identifier, or any
additional triples or parameters added in addition to those
inherited by the referenced unique identifier, server 104
and/or client 102 may generate one or more data records
storing the triples and/or parameters associated with the
unmique 1dentifier in one or more of the disclosed databases
108, 110, 112. The user may then execute the query accord-
ing to the inhented triples and/or parameters, as well as any
additional triples/parameters combined with the inheritance
(e.g., <[movie]> <contains> <FlyingCar> AND <|movie]>
<createdIn> <[country]> in FIGS. 20-21), and submit the
query.

Server(s) 104 may execute a database query of the knowl-
edge base 110 as disclosed above. However, the database
query of the knowledge base 110 will include all those
triples and/or parameters associated with the unique 1denti-
fier, as well as those triples/parameters later added to the
inherited triples/parameters associated with the unique 1den-
tifier, which, would include movies that contain flying cars
and are created 1n all countries, according to the inherited
and additional parameters, as seen i FIGS. 20-21.

Semantic query templates may be changed by users over
time. For example, users may provide changes in the knowl-
edge model or refine query details. In the context of complex
semantic query templates, the user may want to understand
the changes over time 1n order to see the evolution of the
query template. Every change of a semantic query template
may create a new version of the semantic query template.
This ensures that previous versions do not get overwritten
and lost.

In some embodiments, a user browsing the semantic
query catalog may see all versions of every semantic query
template. The user may select a specific semantic query

US 11,086,360 B2

25

template version and use that for contextualization. Alter-
natively, a user may desire to always use the latest version
of a specific semantic query template. In this case, rather
than referring to a specific version of a semantic query
template, the user interface may display a configuration
option which only indicates the latest versions.

A semantic query template may be used as a parameter
value, and the same principles described above apply: when
a specific version of a semantic query template 1s used, that
will be incorporated. When no specific version of a semantic
query template 1s used, then the latest version 1s always used
as the default parameter. This may cause inconsistencies,
such as a new version of a semantic query template being
created that has an additional parameter itself, which then

becomes a parameter value. This may cause various ncon-

sistencies, as an additional parameter has to be contextual-

1zed.

Since the relationships between semantic query templates
(e.g., one using another one as parameter value) 1s known,
a change 1n a relationship may be used to identify one or
more potential inconsistencies between semantic query tem-
plates and/or relationships within them. A user or adminis-
trator may resolve any potential contlicts or mnconsistencies
in order to ensure that changes within semantic query
templates are consistent.

After a semantic query template 1s contextualized, it may
be utilized as a semantic query. In order to contextualize the
semantic query templates, parameters may be replaced by
concepts, relationship, imstances or other semantic queries.
As semantic queries continue to evolve, it may be more and
more diflicult to determine the origin of the semantic que-
ries. In other words, the user may be unable to identify the
original semantic query template used to create the semantic
query. In order to record the use of semantic query templates
it 1s necessary to know which semantic query was derived
from which of the semantic query templates (it can be more
than one due to the ability to combine several through
Boolean operators). Therefore, the system will maintain a
reference (possibly visible to the end user) between the
semantic query as a result of contextualization and all
possible semantic query templates that were used for the
contextualization. When the semantic query 1s executed
(once or more than once) the query processor may record the
transaction within a query history, and may simultaneously
correlate semantic query template use. The user may there-
fore perform an analysis of most recent evaluations based on
this historic data frequency and most recent evaluations.

Thus, the process of generating and using pre-defined
semantic queries may be summarized as follows: First, the
user searches the predefined semantic query templates for
queries that contain concepts that the user 1s interested 1n
(e.g., 1n the template catalog). For this, the user reuses the
special query template that supports searching for predefined
semantic query templates. The system fetches all concepts,
instances and relationships that a user can use to contextu-
alize the query template for queries. Once contextualized,
the user inmitiates the search for query templates and the
system transmits the contextualized query and returns the
matching query templates to the user. The result might be
empty 1f no query template exists for the chosen contextu-
alization.

Alternatively the user might have a list of predefined
semantic queries stored 1n a local workspace and the user
selects one of those instead of querying for a predefined
semantic query template. Browsing the template catalog by
a user 1s an option also using an appropriate user interface.

10

15

20

25

30

35

40

45

50

55

60

65

26

Second, a suitable semantic query template 1s chosen by
the user and contextualized as necessary. This includes
replacing parameters and possibly changing or extending the
semantic query. In order for the user to be able to choose
concepts, instances and relationships, the system fetches
those from the knowledge model based on the selected
semantic query template.

Extending the semantic query can be done by adding
turther criteria and connecting them with Boolean operators.
The additional criteria can be semantic queries themselves,
or even predefined semantic query templates (which requires
the user to be able to search for query templates while
concurrently contextualizing). Adding parameter constraints
or contextualizing a parameter through a semantic query
itself 1s also part of this step 1n the process of querying.

Third, the user might request the semantic query system
to propose alternative semantic query templates based on the
template that the user has selected. The user has the option
to use a semantic query template similarity search or history-
based semantic query template similarity search, or both.
The semantic query system will search for similar semantic
query templates and present any similar semantic query
templates to the user. The user may then opt to keep the
semantic query template that the user originally selected or
select a similar one from the similarity search result list.

Fourth, the user may execute the contextualized semantic
query and the disclosed system then processes its results. In
order to do so, the system transmits the contextualized
semantic query to the query processor. If a predefined
semantic query template 1s not fully contextualized it cannot
be executed as a query. Instead, the semantic query system
may automatically contextualize it by replacing the param-
cters with all possible applicable concepts, relationships or
instances, and executing the semantic query for each com-
bination. The system may present the results separately for
cach combination, which may result 1n many semantic query
results, one for each parameter replacement combination.
Alternatively, the semantic query system might determine
that 1t 1s best to not execute the query, but 1nstead return the
set of possible concepts, relationships or instances that may
replace any parameter which 1s not vet contextualized. This
may 1ndicate to the user that further contextualization
choices are necessary.

Fifth, the user may manage the semantic query after
execution. One possibility 1s to discard 1t. In addition, 11 the
user modified the semantic query, the user may parameterize
it and store 1t in the semantic query system as a new
predefined semantic query template. In a more advanced
semantic query systems the user may have a workspace
assigned to him and he could also chose to store the query
within his workspace for future reference.

Returning to FIG. 5, once the template 1s chosen (or
created), the user instantiates the template 1n order to define
more accurately the restriction that will be applied to the
search through the instantiated template. To instantiate the
template (1n step 504), the user inserts arbitrarily selected
terms 1into the different sections of the template. For
example, 1n the case of semantic triple-based systems where
templates are 1n the form of (C,r,C), the concepts presented
as subject (s) and object (o) 1n the (s,p,0) triple can be
substituted by specific instances that belong to the respective
concepts. Embodiments may consider providing guidance to
the user by proposing candidate instances that belong to the
given concept through diflerent means.

FIG. 8C depicts user interface 800 after the user has
selected the desired triple. As such, the triple “Assets
including movie with actor” 1s displayed 1n user interface

US 11,086,360 B2

27

800. In this example, the triple includes two concepts: movie
and actor. Within user interface 800 the user can click on
either the word movie 820 or actor 822, which are current
generic concepts. Alter clicking on either movie 820 or actor
822 the user 1s provided with an opportunity to replace the
generic concept of either movie or actor with a specific
instance of the concept.

The user interface 800 of FIG. 8C also presents the user
with an option to add 824 additional templates that can be
combined with the “assets including movie with actor”
template to further refine the search. Alternatively, the user
can cancel 826 a particular template and remove the tem-
plate from the search query.

Accordingly, 1n FIG. 8D, the user has clicked upon the
movie 820 concept and entered the specific mstance 830 of
“the dark nmight rises”. Similarly, the user has clicked upon
the actor 822 instance and entered the specific instance 832
of “christian bale”. When entering the specific instances into
the template the user may be provided with an opportunity
to enter free form text. In some implementations, as the user
types potential auto-completions for the letters being typed
may be displayed for selection by the user. In that case, the
auto-completions may be selected from the relevant knowl-
edge model. Alternatively, the user may select specific
instances by navigating directly through a representation of
the relevant knowledge model.

In one specific implementation of the system, a semantic
knowledge model 1n which the templates are triple-based
statements 1s utilized. In that configuration, as discussed
above, templates may be composed by two concepts and a
valid relationship between those two concepts (C.r,C)
selected from the knowledge model. If, 1n instantiating the
template, the user substitutes concepts for instances, there
would exist four different configurations of search query
statement that may be generated based upon the template.
FIG. 6 1s an illustration depicting the four possible query
statement combinations.

Item 602 depicts a concept-relationship-concept (C,r,C)
statement. In that case, none of the concepts has been
instantiated (1.e., replaced with instances), so the statement

that would be added to the query 1s 1dentical to the corre-
sponding template. For example, 1t the abstract template
(“basketball player”, “plays for”, “team”) 1s selected and left
unchanged for the creation of statement 602, 1t would appear
in 1dentical form 1n the query. Such open statements would
match all assets with any basketball player playing for any
team 11 executed as part of a query.

Item 604 depicts an instance-relationship-concept (1r,C)
statement. In statement 604 the subject, but not the object,
of the triple statement has been instantiated (1.e., replaced
with a specific instance). Statement 604 1s therefore more
precise than statement 602. An example of such a statement
would be (*Pau Gasol™, “plays for”, “team’), meaning that
the statement, 1t added to an executed query, would restrict
the query results to assets from the knowledge base that
match the condition of a particular basketball player (*Pau
(Gasol”) playing for any team.

Item 606 depicts a concept-relationship-instance (C,r,I)
statement. Statement 606 1s the opposite case to statement
604 because 1n statement 606 the object, but not the subject,
has been mstantiated (i.e., replaced with a specific instance).
It 1s thus also more precise 1n terms of search restrictions
than statement 602. An example of this type of statement
would be (“basketball player”, “plays for”, “Los Angeles

Lakers™), meaning that the statement, 1f added to an

5

10

15

20

25

30

35

40

45

50

55

60

65

28

executed query, would restrict the results to those associated
with any basketball player playing for a particular team
(“Los Angeles Lakers™).

Item 608 depicts an i1nstance-relationship-instance (I,r,1)
statement. In statement 608 both the subject and object
concepts from the template are instantiated (1.e., replaced
with specific istances), expressing a more precise statement
than statements 602, 604, or 606. An example of such a
statement would be (“Pau Gasol”, “plays for”, “Los Angeles
Lakers”), meaning that the statement, 1f added to an
executed query, would restrict the results to those annotated
with a particular player (“Pau Gasol”) playing for a particu-
lar team (“Los Angeles Lakers”).

FIG. 7 1s an 1llustration depicting example templates and
potential instantiation for each of the example templates.
FIG. 7 1s made up of three columns of statements (columns
702, 704, and 706) arranged in three rows (row a), row b)
and row c¢)). Each column represents different ways a
particular template may be 1nstantiated in the present sys-
tem.

The template for column 702 consists of the triple (*bas-
ketball player”, “plays for”, “team’). This template might be
instantiated as: a) the (C,r,C) statement which 1s 1dentical to
the template; b) an (I,r,C) statement like (“Pau Gasol”,
“plays for”, “team™); ¢) a (C,r,I) statement like (“basketball
player”, “plays for”, “Memphis Grizzlies”); or d) an (I,r.I)
statement like (*Kobe Bryvant”, “plays for”, “Los Angeles
Lakers™).

The template for column 704 consists of the triple
(“team”, “beats”, “team”). This template can be 1nstantiated
as: a) the (C,r,C) statement that 1s 1dentical to the template;
b) an (I,r,C) statement like (“Boston Celtics”, “beats”,
“team”); ¢) a (C,1,]) statement like (*team”, “beats”, “Mem-
phis Grizzlies”); or d) an (I,r,]) statement like (*Dallas
Mavericks”, “beats”, “Los Angeles Lakers™).

The template for column 706 consists of the triple (*bas-
ketball player”, “performs”, “action”). This template can be
instantiated as: a) the (C,r C) statement which 1s identical to
the template; b) an (Lr,C) statement like (*Kobe Bryant™,
“performs™, “action”); ¢) a (C,r,I) statement like (“basketball
player”, “performs™, “Steal”); or d) an (I,r,]) statement like
(“Pau Gasol”, “performs”, “Dunk’™).

Independently of the type of template used and the way
statements have been instantiated, the generated statements
can be combined 1nto a structured query, which can be used
to perform a search. Therefore, the query can be thought of
as a combination of these statements that may be formally
represented as {SIUS2 . .. USn}.

It should be noted that this manner of representing the
combination of statements 1s just one possible mechanism
for representing a query as other formal representations may
be used, as well as different ways to combine the statements
rather than a union. In the case of a semantic system as
described in the present examples, each statement S1 may be
a triple 1 the form (s,p,0), where the subject (*s”) and the
object (*0”) i the statements may appear either as an
instance or as a concept.

With reference to FIG. 7, an example query can be
constructed using statement b) of column 704 and statement
d) of column 706, namely the (I,r,C) statement (*“Boston
Celtics”, “beats™, “team”) and the (Lr,I) statement (“Pau
Gasol”, “performs”, “Dunk’™). A query combining those two
statements would generate a result listing including items
with annotations in which a particular team (“Boston Celt-
ics”’) wins a match against any other team, and 1n which a
particular player (“Pau Gasol™) appears performing a par-

ticular action (“Dunk™). Formally, the query may be

A S Y 4

US 11,086,360 B2

29

expressed as {S1US2} or {(“Boston Celtics”,
“team”)U(“Pau Gasol”, “performs”, “Dunk”)}.

The semantic query based on the set of statements,
arbitrarily represented as ({S1US2 . . . USn}), can be
executed against a knowledge base 1n order to retrieve 1tems
that fulfill the conditions defined 1n the query. In performing,
the search, the annotations of the items in the knewledge
base are analyzed to determine whether they satlsfy he
terms of the query. 11 so, that those items are returned 1n the
result set.

The result of the search 1s an 1dentification of 1tems from
the knowledge base that are relevant to the statements 1n the
query. One possible way of representing the result set 1s as
{Al (Sa, Sb, . .. Sz), A2 (Sa', Sb', .. . SZ), .. . An (Sa",
Sh", . Sz")}, where Ai is an asset that satisfies the
assertions 1n the query, and (Sa, Sb, . . . Sz) 1s the complete
set of statements that are related to the given asset. Again, 1t
should be noted that the actual implementation choice
regarding the retrieval of assets, as well as the formal
representation of the results, might be implemented 1n a
number of different ways. For instance, 1t could be case that
in a given implementation, assets 1n the resulting set are only
required to fulfill one or some of the statements 1n the query
(e.g., multiple statements may be cord together). Similarly,
statements in the annotations and in the query may be
slightly different, yet still be considered as a match, etc.
Additionally, embodiments may order the set of results
according to various criteria. For example, the items 1n the
result set for which the assertions in the query have more
weight (because those are the only statements associated
with the 1tem, or because the same assertion 1s associated
more than once with the same 1tem, e.g., for being associated
from different parts along the length of a video) show up
carlier 1n the results.

When matching statements in the query to those used for
annotation of 1items 1n the knowledge base, matches may be
identified even when the statements in the query are not
identical to the annotations in the knowledge base. For
example, 1n the case of triple-based statements, the state-
ments can be ol four general types depending on the
instantiation of subject and object, namely (C.r,C), (C,r.,I),
(Lr,C) and (1,r,1), as 1llustrated in FIG. 6. For this reason, the
statements 1n the query may be expanded and/or generalized
in order to obtain all the possible matches including all the
different types of statement. In performing that expansion,
concepts 1n the query statements are expanded into all
possible instance values, and instances 1n the query state-
ments are generalized into the concept to which they belong.
In such an implementation, a statement of the type (I,r,I) 1n
the query such as (I1,r,I2), where instance 11 belongs to
concept C1 and instance 12 belongs to concept C2, could be
expanded to also match assets annotated with the statements
(I11.r,C2), (C1,r,I12) or (C1,r,C2).

The following 1s an example of thus query expansion.
With reference to the query specified above {S1US2}={
(“Boston Celtics™, “beats™”, “team™)U(*Pau Gasol”, “per-
forms”, “Dunk™)}, the search process could return, for
example, a set of three assets such as {A1l (Sal, Sb, Sc, Sd),
A2 (Sal, Sbh, Se, Sf, Sg), A3 (Sa2, Sb, Sh, Si)}. In this
example, in the resulting set S2 would be Sb (i.e., all
returned assets that contain an annotation for “Pau Gasol
performing a dunk™) and S1 would match both Sal (“Boston
Celtics”, “beats™, “Los Angeles Lakers™”) and Sa2 (“Boston
Celtics”, “beats”, “Memphis Grizzlies”). Sc-S1 are the other
statements used to annotate those three assets. For example,
assuming that Sc=(*Pau Gasol”, “plays for”, “Los Angeles
Lakers™) and Sd=(*“Kobe Bryant”, “plays for”, “Los Angeles
Lakers™), asset Al features a “Dunk” by “Pau Gasol” (Sb)

“beats”,

10

15

20

25

30

35

40

45

50

55

60

65

30

in which him and “Kobe Bryant” are playing with “Los
Angeles Lakers™ (Sc, Sd) 1in a match lost against “Boston
Celtics” (Sal). Once again, while this particular example
illustrates a very particular scenario, it should be noted that
different results could have been retrieved depending on the
actual implementation details of the search functionality.

In the present system, after the user has generated a
number of instantiated templates or statements, the state-
ments are combined together and executed against the
knowledge base. The statements (and any other natural
language terms provided by the user) may be joined in a
formal query through the use of well-known query lan-
guages for semantic graph models, such as SPARQL, or
other RDF query languages. Such query languages allow for
the creation of queries through the use of triple patterns
including both constants and variables, and are therelfore
suitable for the combination of statements 1n standard for-
mats that cater for logical conjunctions 1n accordance with
the present disclosure.

As a non-limiting example, the steps described above
(and all methods described herein) may be performed by any
central processing unit (CPU) or processor in a computer or
computing system, such as a microprocessor running on a
server computer, and executing instructions stored (perhaps
as applications, scripts, apps, and/or other soiftware) 1n
computer-readable media accessible to the CPU or proces-
sor, such as a hard disk drive on a server computer, which
may be communicatively coupled to a network (including
the Internet). Such software may include server-side soft-
ware, client side software, browser-implemented software
(e.g., a browser plugin), and other software configurations.

Although the present mvention has been described with
respect to preferred embodiment(s), any person skilled 1n the
art will recognize that changes may be made in form and
detail, and equivalents may be substituted for elements of
the invention without departmg from the spirit and scope of
the invention. Therefore, 1t 1s intended that the invention not
be limited to the particular embodiments disclosed for
carrying out this invention, but will include all embodiments
falling within the scope of the appended claims.

What 1s claimed 1s:

1. A system, comprising a server, comprising a hardware
computing device coupled to a network and including at
least one processor executing instructions within a memory
which, when executed, cause the system to:

generate a graphical user interface (GUI), transmitted

through the network and displayed on a client coupled

to the network, the GUI comprising:

a first GUI control receiving a selection of concept
from a plurality of concepts identified within a
knowledge model; and

a second GUI control receiving a selection of a rela-
tionship from a plurality of relationships within the
knowledge model;

receive, from the client through the network, a first user

input selecting the concept and the relationship;

execute a first database command selecting, from a query
template database coupled to the network, at least one
query template including the concept and the relation-
ship;

transmit, through the network, a first mnstruction in the

istructions updating the GUI to display a third GUI

control automatically populated with the at least one
query template;

recerve, from the client through the network, a second

user mput selecting a query template from the at least

one query template;

US 11,086,360 B2

31

execute a second database command selecting, from the
query template database, at least one parameter of the
query template selected;

transmit, through the network, a second 1nstruction 1n the

instructions updating the GUI to display at least one
GUI control, automatically populated with the at least
one parameter of the query template;

receive, from the client, a modification to the at the least

one parameter of the query template;

store the query template and the modification 1n the query

template database;

identify, within a knowledge base comprising a data or file

repository, a metadata or a content including a combi-
nation of the concept, the relationship, or an instance of
the concept, and associated 1n the knowledge base with
at least one data or at least one file;

generate a fourth GUI control comprising a list including

a name of the at least one data or the at least one file;
transmit the fourth GUI control through the network for
display within the GUI on the client.

2. The system of claim 1, wherein the knowledge model
comprises a subject matter domain comprising a plurality of
concepts, mstances, and relationships defining a knowledge
model ontology organized as a plurality of triple statements.

3. The system of claim 2, wherein the knowledge model
includes a hierarchy of super groups or sub groups among
and between the plurality of concepts, instances, and rela-
tionships, and wherein the highest concept 1s all possible
concepts, the highest instance 1s all possible mstances, and
the highest relationship 1s all possible relationships.

4. The system of claim 1, wherein the modification
includes replacing a specific combination ol characters,
indicating that the at least one parameter may be replaced,
with the at least one concept, the at least one mstance, or the
at least one relationship.

5. The system of claim 1, wheremn the modification
includes:

receiving a user mput comprising the modification and a

umque 1dentifier comprising a template name; and

storing the query template and the modification as a

predefined semantic query in association with the
umque 1dentifier in a semantic search query catalog.

6. The system of claim 5, wherein the unique identifier
identifies a semantic query including inheritance from at
least one additional template.

7. The system of claim 1, whereimn the modification
includes at least one constraint input by a system adminis-
trator restricting an input or selection of the parameter
received by a subsequent user.

8. The system of claim 1, whereimn the modification
includes a selection of an operator

concatenating a first triple statement to second triple

statement; or

grouping the first triple statement with the second triple

statement.

9. The system of claim 1, wherein the parameter com-
prises embedding a semantic query within the query tem-
plate, the semantic query including the relationship between
the at least one concept and the at least one instance.

10. The system of claim 1, wherein the 1nstructions further
cause the system to store the modification as a new query
template, wherein subsequent users are able to modify the at
least one parameter.

11. A method, comprising:

generating, by a server, comprising a hardware computing,

device coupled to a network and including at least one
processor executing instructions within a memory, a

10

15

20

25

30

35

40

45

50

55

60

65

32

graphical user interface (GUI), transmitted through the
network and displayed on a client coupled to the
network, the GUI comprising;:
a first GUI control receiving a selection concept from
a plurality of concepts 1dentified within a knowledge
model; and
a second GUI control receiving a selection of a rela-
tionship from a plurality of relationships within the
knowledge model;
recerving, by the server from the client through the
network, a first user mput selecting the concept and the
relationship,
executing, by the server, a first database command select-
ing, from a query template database coupled to the
network, at least one query template including the
concept and the relationship;
transmitting, through the network, a first instruction in the
istructions updating the GUI to display a third GUI
control automatically populated with the at least one
query template;
recerving, by the server from the client through the
network, a second user input selecting a query template
from the at least one query template;
executing, by the serer, a second database command
selecting, from the query template database, at least one
parameter of the query template selected;
transmitting, by the server through the network, a second
instruction in the instructions updating the GUI to
display at least one GUI control, automatically popu-
lated with the at least one parameter of the query
template;
recerving, by the server, from the client, a modification to
the at least one parameter of the query template;
storing, by the server, the query template and the modi-
fication 1n the query template database;
identitying, by the server, within a knowledge base com-
prising a data or file repository, a metadata or a content
including a combination of the concept, the relation-
ship, or an 1nstance of the concept, and associated in the
knowledge base with at least one data or at least one
file;
generating, by the server, a fourth GUI control comprising,
a list including a name of the at least one data or the at
least one file;

transmitting, by the server, the fourth GUI control through

the network for display within the GUI on the client.

12. The method of claim 11, wherein the knowledge
model comprises a subject matter domain comprising a
plurality of concepts, instances, and relationships defining a
knowledge model ontology organized as a plurality of triple
statements.

13. The method of claim 12, wherein the knowledge
model includes a hierarchy of super groups or sub groups
among and between the plurality of concepts, instances, and
relationships, and wherein the highest concept 1s all possible
concepts, the highest instance 1s all possible mstances, and
the highest relationship 1s all possible relationships.

14. The method of claim 11, wherein the modification
includes replacing a specific combination ol characters,
indicating that the at least one parameter may be replaced,
with the at least one concept, the at least one mstance, or the
at least one relationship.

15. The method of claim 11, wherein the modification
includes:

recerving a user mput comprising the modification and a

unique 1dentifier comprising a template name; and

US 11,086,360 B2

33

storing the query template and the modification as a
predefined semantic query in association with the
umque 1dentifier 1n a semantic search query catalog.

16. The method of claim 15, wherein the unique identifier
identifies a semantic query including inheritance from at
least one additional template.

17. The method of claim 11, wherein the modification
includes at least one constraint input by a system adminis-
trator restricting an input or selection of the parameter
received by a subsequent user.

18. The method of claim 11, wherein the modification
includes a selection of an operator

concatenating a {first triple statement to second triple
statement; or

grouping the first triple statement with the second triple
statement.

19. The method of claim 11, wherein the parameter
comprises embedding a semantic query within the query
template, the semantic query including the relationship
between the at least one concept and the at least one
instance.

20. The method of claim 11, further comprising the step
of storing, by the server, the modification as a new query
template, wherein subsequent users are able to modify the at
least one parameter.

10

15

20

25

34

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 11,086,860 B2 Page 1 of 1
APPLICATION NO. : 16/353368

DATED : August 10, 2021

INVENTOR(S) : Sinuhe Arroya et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Claims

Column 32, Line 4, Claim 11 “selection concept” should read --selection of a concept--.

Signed and Sealed this
First Day of February, 2022

e

Drew Hirshfeld
Performing the Functions and Duties of the

Under Secretary of Commerce for Intellectual Property and
Director of the United States Patent and Trademark Office

	Front Page
	Drawings
	Specification
	Claims
	Corrections/Annotated Pages

